Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T22:38:18.390Z Has data issue: false hasContentIssue false

Oxygen isotope compositions of phosphate from arvicoline teeth and Quaternary climatic changes, Gigny, French Jura

Published online by Cambridge University Press:  20 January 2017

Nicolas Navarro*
Affiliation:
UMR CNRS 5561-Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 21000 Dijon, France
Christophe Lécuyer
Affiliation:
UMR CNRS 5561-Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 21000 Dijon, France UMR CNRS 5125-PEPS Paléoenvironnements and Paléobiosphère, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
Sophie Montuire
Affiliation:
UMR CNRS 5561-Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 21000 Dijon, France EPHE-Ecole Pratique des Hautes Etudes, 21000 Dijon, France
Cyril Langlois
Affiliation:
UMR CNRS 5125-PEPS Paléoenvironnements and Paléobiosphère, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
François Martineau
Affiliation:
UMR CNRS 5125-PEPS Paléoenvironnements and Paléobiosphère, Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
*
*Corresponding author. UMR CNRS 5561—Biogéosciences, Centre des Sciences de la Terre, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France. Fax: +33-3-80-39-63-87. E-mail address:nicolas.navarro@u-bourgogne.fr(N. Navarro).

Abstract

Oxygen isotope compositions of biogenic phosphates from mammals are widely used as proxies of the isotopic compositions of meteoric waters that are roughly linearly related to the air temperature at high- and mid-latitudes. An oxygen isotope fractionation equation was determined by using present-day European arvicoline (rodents) tooth phosphate: δ18Op = 20.98(±0.59) + 0.572(±0.065) δ18Ow. This fractionation equation was applied to the Late Pleistocene karstic sequence of Gigny, French Jura. Comparison between the oxygen isotope compositions of arvicoline tooth phosphate and Greenland ice core records suggests to reconsider the previously established hypothetical chronology of the sequence. According to the δ18O value of meteoric water–mean air temperature relationships, the δ18O value of arvicoline teeth records variations in mean air temperatures that range from 0° to 15°C.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J., Koch, P.L., Zachos, J.C., (2000). Global climate change and North American mammalian evolution. Erwin, D.H., Wing, S.L., Deep Time: Paleobiology's Perspective. Paleobiology 26, 259288.Google Scholar
Ayliffe, L.K., Chivas, A.R., (1990). Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54, 26032609.Google Scholar
Ayliffe, L.K., Lister, A.M., Chivas, A.R., (1992). The preservation of glacial–interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 179191.Google Scholar
Bryant, J.D., Luz, B., Froelich, P.N., (1994). Oxygen isotope composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107, 303316.Google Scholar
Buoncristiani, J.-F., Campy, M., Pugin, A., (2002). Modalité de la dernière extension glaciaire maximale dans le Jura et proposition de corrélation avec l'enregistrement isotopique du Groenland. Richard, H., Vignot, A., Equilibres et ruptures dans les écosystèmes durant les 20 derniers millénaires en Europe de l'Ouest, Actes du colloque international de Besançon, Septembre 2000 Presses Universitaires Franc-Comtoises, Besançon., 2734.Google Scholar
Campy, M., Chaline, J., (1993). Missing records and depositional breaks in French Late Pleistocene cave sediments. Quaternary Research 40, 318331.Google Scholar
Campy, M., Chaline, J., Heim, J., Mourer-Chaviré, C., Vuillemey, M., (1989a). La séquence chronoclimatique de Gigny. Campy, M., Chaline, J., Vuillemey, M., La baume de Gigny (Jura). XXVIIe supplément à Gallia Préhistoire Editions du CNRS, Paris., 243251.Google Scholar
Campy, M., Chaline, J., Vuillemey, M., (1989b). La Baume de Gigny (Jura). XXVIIe supplément à Gallia Préhistoire. Editions du CNRS, Paris., 265 pp.Google Scholar
Chaline, J., Brochet, G., (1989). Les rongeurs. Leurs significations paléoécologiques et paléoclimatiques. Campy, M., Chaline, J., Vuillemey, M., La baume de Gigny (Jura). XXVIIe supplément à Gallia Préhistoire Editions du CNRS, Paris., 97109.Google Scholar
Chaline, J., Brunet-Lecomte, P., Campy, M., (1995). The last glacial/interglacial record of rodent remains from the Gigny karst sequence in the French Jura used for palaeoclimatic and palaeoecological reconstructions. Paleogeography, Paleoclimatology, Palaeoecology 117, 229252.Google Scholar
Clyde, W.C., Gingerich, P.D., (1998). Mammalian community response to the latest Paleocene thermal maximum: an isotaphonomic study in the northern Bighorn Basin, Wyoming. Geology 26, 10111014.Google Scholar
Cornette, J.L., Lieberman, B.S., Goldstein, R.H., (2002). Documenting a significant relationship between macroevolutionary origination rates and Phanerozoic pCO2 levels. Proceedings of the National Academy of Sciences of the United States of America 99, 78327835.Google Scholar
Crowson, R.A., Showers, W.J., Wright, E.K., Hoering, T.C., (1991). A method for preparation of phosphate samples for oxygen isotope analysis. Analytical Chemistry 63, 23972400.Google Scholar
D'Angela, D., Longinelli, A., (1990). Oxygen isotopes in living mammal's bone phosphate: further results. Chemical Geology 86, 7582.Google Scholar
Dansgaard, W., (1964). Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjornsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
Efron, B., Tibshirani, R.J., (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.Google Scholar
Evin, J., (1989). Les datations radiocarbone. Campy, M., Chaline, J., Vuillemey, M., La baume de Gigny (Jura). XXVIIe supplément à Gallia Préhistoire Editions du CNRS, Paris., 5356.Google Scholar
Fricke, H.C., O'Neil, J.R., (1999). The correlation between 18O/16O ratios of meteoric water and surface temperature: its use in investigating terrestrial climate change over geologic time. Earth and Planetary Science Letters 170, 181196.Google Scholar
Fricke, H.C., Clyde, W.C., O'Neil, J.R., Gingerich, P.D., (1998). Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth and Planetary Science Letters 160, 193208.Google Scholar
Genoni, L., Iacumin, P., Nikolaev, V., Gribchenko, Y., Longinelli, A., (1998). Oxygen isotope measurements of mammoth and reindeer skeletal remains: an archive of Late Pleistocene environmental conditions in Eurasian Arctic. Earth and Planetary Science Letters 160, 587592.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S.J., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores. Nature (London) 366, 552554.CrossRefGoogle Scholar
Huertas, A.D., Iacumin, P., Stenni, B., Chillon, B.S., Longinelli, A., (1995). Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59, 42994305.CrossRefGoogle Scholar
IAEA/WMO, 2001. (2001). Global Network for Isotopes in Precipitation.. The GNIP Database.Google Scholar
Kohn, M.J., (1996). Predicting animal δ 18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60, 48114829.Google Scholar
Langlois, C., Simon, L., Lécuyer, C., (2003). Box-modeling of bone and tooth phosphate oxygen compositions as a function of environmental and physiological parameters. Isotopes in Health and Environmental Studies 39, 259272.CrossRefGoogle ScholarPubMed
Le Louan, H., Quéré, J.P., (2003). Les Rongeurs de France. Faunistique et biologie. INRA édition, Paris.Google Scholar
Lécuyer, C., Grandjean, P., O'Neil, J.R., Cappetta, H., Martineau, F., (1993). Thermal excursions in the ocean at the Cretaceous–Tertiary boundary (northern Morocco): the δ 18O record of phosphatic fish debris. Palaeogeography, Palaeoclimatology, Palaeoecology 105, 235243.Google Scholar
Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C., Paris, F., Robardet, M., (1998). δ 18O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta 62, 24292436.Google Scholar
Lindars, E.S., Grimes, S.T., Mattey, D.P., Collinson, M.E., Hooker, J.J., Jones, T.P., (2001). Phosphate d180 determination of modern rodent teeth by direct laser fluorination: an appraisal of methodology and potential application to palaeoclimate reconstruction. Geochimica et Cosmochimica Acta 65, 25352548.Google Scholar
Longinelli, A., (1984). Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?. Geochimica et Cosmochimica Acta 48, 385390.Google Scholar
Luz, B., Kolodny, Y., (1985). Oxygen isotope variations in phosphate of biogenic apatites: IV. Mammal teeth and bones. Earth and Planetary Science Letters 75, 2936.CrossRefGoogle Scholar
Luz, B., Kolodny, Y., Horowitz, M., (1984). Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48, 16891693.Google Scholar
Luz, B., Cormie, A.B., Schwarcz, H.P., (1990). Oxygen isotope variations in phosphate of deer bones. Geochimica et Cosmochimica Acta 54, 17231728.Google Scholar
Montuire, S., Michaux, J., Legendre, S., Aguilar, J.-P., (1997). Rodents and climate: 1. A model for estimating past temperatures using arvicolids (Mammalia: Rodentia). Palaeogeography, Palaeoclimatology, Palaeoecology 128, 187206.Google Scholar
Norrdahl, K., Korpimäki, E., (2002). Seasonal changes in the numerical responses of predators to cyclic vole populations. Ecography 25, 428438.Google Scholar
O'Neil, J.R., Adami, L.H., (1969). The oxygen isotope partition function ratio of water and the structure of liquid water. Journal of Physical Chemistry 73, 15531558.Google Scholar
O'Neil, J.R., Roe, L.J., Reinhard, E., Blake, R.E., (1994). A rapid and precise method of oxygen isotope analysis of biogenic phosphates. Israel Journal of Earth Sciences 43, 203212.Google Scholar
Repenning, C.A., Fejfar, O., Heinrich, W.-D., (1990). Arvicolid rodent biochronology of the Northern Hemisphere. Fejfar, O., Heinrich, W.-D., International Symposium Evolution, Phylogeny and Biostratigraphy of Arvicolids (Rodentia, Mammalia), Rohanov, May 1987 Geological Survey, Prague., 385418.Google Scholar
Roy, K., Valentine, J.W., Jablonski, D., Kidwell, S.M., (1996). Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends in Ecology and Evolution 11, 458463.Google Scholar
Salamolard, M., Butet, A., Leroux, A., Bretagnolle, V., (2000). Response of an avian predator to variations in prey density at a temperate latitude. Ecology 81, 24282441.Google Scholar
Schmidt, H.-L., Werner, R.A., Rossmann, A., (2001). 18O pattern and biosynthesis of natural plant products. Phytochemistry 58, 932.Google Scholar
Siegenthaler, U., Oeschger, H., (1980). Correlation of 18O in precipitation with temperature and altitude. Nature 285, 314317.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Müller, J., Trimborn, P., Alefs, J., (1996). A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ 18Op-air temperature relation in the past. Geochimica et Cosmochimica Acta 60, 40254036.Google Scholar
Vrba, E.S., Denton, G.H., Prentice, M.L., (1989). Climatic influences on early Hominid behavior. OSSA 14, 127156.Google Scholar
Weninger, B., Jöris, O., Danzeglocke, U., (2002). Cologne Radiocarbon Calibration and Paleoclimate Research Package. Universität zu Köhln, Köln.Google Scholar
Yurtsever, Y., Gat, J.R., (1981). Atmospheric waters. Gat, J.R., Gonfiantini, R., Stable Isotope Hydrology—Deuterium and Oxygen-18 in the Water Cycle IAEA, 103142.Google Scholar