Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:11:25.381Z Has data issue: false hasContentIssue false

A new Shoreline displacement model for the last 7 ka from eastern James Bay, Canada

Published online by Cambridge University Press:  20 January 2017

Ionel Florin Pendea*
Affiliation:
Department of Geography, McGill University and Global Environmental and Climate Change Centre (GEC3), 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
André Costopoulos
Affiliation:
Department of Anthropology, McGill University, 855 Sherbrooke Street West, Montreal, Quebec H3A 2T7, Canada
Colin Nielsen
Affiliation:
Department of Anthropology, McGill University, 855 Sherbrooke Street West, Montreal, Quebec H3A 2T7, Canada
Gail Lois Chmura
Affiliation:
Department of Geography, McGill University and Global Environmental and Climate Change Centre (GEC3), 805 Sherbrooke Street West, Montreal, Quebec H3A 2K6, Canada
*
*Corresponding author. Fax: +1 514 398 7437.E-mail address:ionel.pendea@mail.mcgill.ca (I.F. Pendea).

Abstract

The shoreline displacement history of the eastern James Bay lowlands in the last 7 ka has been investigated by means of AMS radiocarbon dating of sediments cored from wetlands. We present twelve radiocarbon dates on macrofossils from six sites spread along a gradient of increasing land age and elevation. Palynomorph analysis (pollen, spores, and dinoflagellate cysts) was used to define the isolation stratigraphy. During the last 7 ka the shoreline elevation has regressed at a decreasing rate. The rate of shoreline emergence was initially rapid (6. 5 m/ 100 yr) between 6850 and 6400 cal yr BP then slowed down to 1.4– 2 m/ 100 yr during the late Holocene. Examination of previous relative sea level data based upon mollusc shells reveals high levels of uncertainty that mask potential temporal variability.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, A.E., Fournier, J., (1993). Macrobenthos communities of Cambridge, McBeth and Itirbilung Fiords, Baffin Island, Northwest Territories, Canada. Arctic 46, 6071.Google Scholar
Allard, M., Seguin, M.K., (1985). La déglaciation d'une partie du versant hudsonien des rivières Nastapoka, Sheldrake et à l'Eau Claire. Géographie physique et Quaternaire 39, 1324.Google Scholar
Andrews, J.T., (1970). A geomorphic study of postglacial uplift with particular reference to arctic Canada. Institute of British Geographers, London.Google Scholar
Andrews, J.T., Falconer, G., (1969). Late glacial and post-glacial history and emergence of the Ottawa Islands, Hudson Bay, Northwest Territories: evidence on the deglaciation of Hudson Bay. Canadian Journal of Earth Sciences 6, 12631276.CrossRefGoogle Scholar
Ascough, P., Cook, G., Dugmore, A., (2005). Methodological approaches to determining the marine radiocarbon reservoir effect. Progress in Physical Geography 29, 532547.Google Scholar
Dyke, A.S., Peltier, W.R., (2000). Forms, response times and variability of relative sea-level curves, glaciated North America. Geomorphology 32, 315333.Google Scholar
Dyke, S, Moore, , and Robertson, , (2003). Deglaciation of North America. Open File 1574. Geological Survey of Canada.Google Scholar
FAA/William, J. Hughes Technical Center, (2007). Wide-Area Augmentation System performance analysis report # 22 July 2001–September 30. available at http://www.nstb.tc.faa.gov/.Google Scholar
Faegri, K., Iversen, J., Kaland, P.E., Krzywinski, K., (1989). Textbook of Pollen Analysis. John Wiley & Sons, London.Google Scholar
Fensome, R.A., Riding, J.B., Taylor, F.J.R., (1996). Dinoflagellates. Jansonius, J., McGregor, D.C., Palynology: Principles and Applications American Association of Stratigraphic Palynologists Foundation, College Station, Texas., 107169.Google Scholar
Glaser, P.H., Hansen, B.C.S., Siegel, D.I., Reeve, A.S., Morin, P.J., (2004). Rates, pathways and drivers for peatland development in the Hudson Bay Lowlands, northern Ontario. Canada. Journal of Ecology 92, 10361053.Google Scholar
Gosling, E., (1992). Systematics and geographic distribution of Mytilus. Gosling, E., The mussel Mytilus: ecology, physiology, genetics and culture. Developments in Aquaculture and Fisheries Science Elsevier, 120.Google Scholar
Hardy, , (1976). Contribution à l'étude g"omorphologique de la portion québécoise des basses terres de la baie de James. Ph.D. Thesis, McGill University, Canada.Google Scholar
Hardy, L., (1977). La déglaciation et les épisodes lacustre et marin sur les versants de la partie québécoise des basses terres de la baie de James. Géographie Physique et Quaternaire 31, 261273.Google Scholar
Hayward, P.J., Ryland, J.S., (1990). Bivalvia and Cephalopoda. Hayward, P.J., Ryland, J.S., The marine fauna of the British Isles and North-West Europe Clarendon Press, Oxford., 731793.Google Scholar
Head, M.J., (1996). Modern dinoflagellate cysts and their biological affinities. Jansonius, J., McGregor, D.C., Palynology: Principles and Applications American Association of Stratigraphic Palynologist Foundation, College Station, Texas., 11971248.Google Scholar
Head, M.J., Harland, R., Matthiessen, J., (2001). Cold marine indicators of the late Quaternary: the new dinoflagellate cyst genus Islandinium and related morphotypes. Journal of Quaternary Science 16, 621636.Google Scholar
Hillaire-Marcel, C., (1976). La déglaciation et le relèvement isostatique sur la côte est de la baie d'Hudson. Cahiers de géographie du Québec 20, 185220.Google Scholar
Hillaire-Marcel, C., (1980). Multiple component post-glacial emergence, Eastern Hudson Bay, Canada. Morner, N.A., Earth Rheology, Isostasy and Eustasy Wiley, Toronto., 215230.Google Scholar
Hillaire-Marcel, C., Fairbridge, R.W., (1978). Isostasy and eustasy of Hudson Bay. Geology 6, 117122.2.0.CO;2>CrossRefGoogle Scholar
Hughen, K.A., Baillie, M.G.L., Bard, E., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, P.J., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). Marine04 Marine radiocarbon age calibration, 0– 26 cal kyr BP. Radiocarbon 46, 10591086.Google Scholar
Lajeunesse, P., Allard, M., (2003a). Late Quaternary deglaciation, glaciomarine sedimentation and glacioisostatic recovery in the Rivière Nastapoka Area, Eastern Hudson Bay, Northern Québec. Géographie physique et Quaternaire 57, 6583.Google Scholar
Lajeunesse, P., Allard, M., (2003b). The Nastapoka drift belt, eastern Hudson Bay: implications for a stillstand of the Québec–Labrador ice margin in the Tyrrell Sea at 8 ka BP. Canadian Journal of Earth Sciences 40, 6576.Google Scholar
McAndrews, J.H., Berti, A.A., Norris, G., (1973). Key to Quaternary pollen and spores of the Great Lakes region. Royal Ontario Museum, Toronto.Google Scholar
McNeely, R, Dyke, S., and Southon, R., (2006). Canadian marine reservoir ages: Preliminary data assessment. Open File 5049. Geological Survey of Canada.CrossRefGoogle Scholar
Miousse, L., Bhiry, N., Lavoie, M., (2003). Isolation and water-level fluctuations of Lake Kachishayoot, Northern Québec, Canada. Quaternary Research 60, 149161.Google Scholar
Moore, P.D., Webb, J.A., Collinson, M.E., (1991). Pollen Analysis. Blackwell Scientific Publications, Oxford.Google Scholar
Peltier, W.R., (2004). Global glacial isostasy and the surface of the Ice-Age Earth: the Ice-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32, 111149.CrossRefGoogle Scholar
Peltier, W.R., (2007). Postglacial coastal evolution: ice ocean-solid Earth interactions in a period of rapid climate change. Harff, J., Hay, W.W., Tetzlaff, D.M., Coastline changes: Interrelation of climate and geological processes. Geological Society of America Special Paper 426 The Geological Society of America, 528.Google Scholar
Reed, D.J., (1990). The impact of sea-level rise on coastal salt marshes. Progress in Physical Geography 14, 465481.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 10291058.Google Scholar
Rochon, A., de Vernal, A., Turon, J.-L., Matthiessen, J., Head, M.J., (1999). Distribution of recent dinoflagellate cysts in surface sediments from the North Atlantic Ocean and adjacent seas in relation to sea-surface parameters. Contribution Series 35. American Association of Stratigraphic Palynologists Foundation, Dallas, Texas.Google Scholar
Saulnier-Talbot, É., Pienitz, R., (2001). Isolation au post-glaciaire d'un bassin côtier près de Kuujjuaraapik-Whapmagoostui, en Hudsonie (Québec): une analyse biostratigraphique diatomifère. Géographie physique et Quaternaire 55, 6374.CrossRefGoogle Scholar
Shennan, I., Tooley, M., Green, F., Innes, J.B., Kennington, K., Lloyd, J.M., Rutherford, M.M., (1999). Sea level, climate change and coastal evolution in Morar, northwest Scotland. Geologie en Mijnbouw 77, 262274.Google Scholar
Shennan, I., Lambeck, K., Horton, B., Innes, J.B., Lloyd, J.M., McArthur, J., Purcell, T., Rutherford, M.M., (2000). Late Devensian and Holocene records of relative sea-level changes in northwest Scotland and their implications for glacio-hydro-isostatic modelling. Quaternary Science Reviews 19, 11031135.CrossRefGoogle Scholar
Stockmarr, J., (1977). Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Talma, A.S., Vogel, J.C., (1993). A simplified approach to calibrating 14C dates. Radiocarbon 35, 317322.Google Scholar
Vaneeckhout, S., (2008). Sedentism on the Finnish Northwest coast: Shoreline reduction and reduced mobility. Fennoscandia Archaeologica XXV, 6172.Google Scholar