Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:36:57.810Z Has data issue: false hasContentIssue false

The monsoon imprint during the ‘atypical’ MIS 13 as seen through north and equatorial Indian Ocean records

Published online by Cambridge University Press:  20 January 2017

Thibaut Caley*
Affiliation:
Université de Bordeaux, UB1, CNRS, UMR 5805 EPOC, France
Bruno Malaizé
Affiliation:
Université de Bordeaux, UB1, CNRS, UMR 5805 EPOC, France
Franck Bassinot
Affiliation:
LSCE/IPSL, Laboratoire CNRS/CEA/UVSQ, F-91198 Gif-sur-Yvette, France
Steven C. Clemens
Affiliation:
Department of Geological Sciences, Brown University, Providence, Rhode Island, USA
Nicolas Caillon
Affiliation:
LSCE/IPSL, Laboratoire CNRS/CEA/UVSQ, F-91198 Gif-sur-Yvette, France
Rossignol Linda
Affiliation:
Université de Bordeaux, UB1, CNRS, UMR 5805 EPOC, France
Karine Charlier
Affiliation:
Université de Bordeaux, UB1, CNRS, UMR 5805 EPOC, France
Helene Rebaubier
Affiliation:
LSCE/IPSL, Laboratoire CNRS/CEA/UVSQ, F-91198 Gif-sur-Yvette, France
*
Corresponding author. Fax: + 33 5 56 84 08 48. E-mail address:t.caley@epoc.u-bordeaux1.fr (T. Caley).

Abstract

Previous studies have suggested that Marine Isotope Stage (MIS) 13, recognized as atypical in many paleoclimate records, is marked by the development of anomalously strong summer monsoons in the northern tropical areas. To test this hypothesis, we performed a multi-proxy study on three marine records from the tropical Indian Ocean in order to reconstruct and analyse changes in the summer Indian monsoon winds and precipitations during MIS 13. Our data confirm the existence of a low-salinity event during MIS 13 in the equatorial Indian Ocean but we argue that this event should not be considered as “atypical”. Taking only into account a smaller precession does not make it possible to explain such precipitation episode. However, when considering also the larger obliquity in a more complete orbitally driven monsoon “model,” one can successfully explain this event. In addition, our data suggest that intense summer monsoon winds, although not atypical in strength, prevailed during MIS 13 in the western Arabian Sea. These strong monsoon winds, transporting important moisture, together with the effect of insolation and Eurasian ice sheet, are likely one of the factors responsible for the intense monsoon precipitation signal recorded in China loess, as suggested by model simulations.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., and Arkin, P. The version 2 global precipitation climatology Project GPCP monthly precipitation analysis 1979–Present. Journal of Hydrometeorology 4, (2003). Google Scholar
Anand, P., Elderfield, H., and Conte, M.H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography 18, (2003). 1050 Google Scholar
Barker, S., Greaves, M., and Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems 4, (2003). Google Scholar
Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackelton, N.J., and Lancelot, Y. The astronomical theory of climate and the age of Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126, (1994). 91108.Google Scholar
Beaufort, L., Lancelot, Y., Camberlin, P., Cayre, O., Vincent, E., Bassinot, F., and Labeyrie, L. Insolation cycles as a major control of equatorial indian ocean primary production. Science 278, (1997). 14511454.CrossRefGoogle Scholar
Berger, A. Long-term variations of daily insolation and Quaternary climate change. Journal of Atmospheric Sciences 35, (1978). 23622367.Google Scholar
Bintanja, R., Van de Wal, R., and Oerlemans, J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, (2005). 125128.Google Scholar
Braconnot, P., Marzin, C., Grégoire, L., Mosquet, E., and Marti, O. Monsoon response to changes in Earth's orbital parameters: comparisons between simulations of the Eemian and of the Holocene. Climate of the Past 4, (2008). 281294.CrossRefGoogle Scholar
Caley, T., Malaizé, B., Zaragosi, S., Rossignol, L., Bourget, J., Eynaud, F., Martinez, P., Giraudeau, J., Charlier, K., and Ellouz-Zimmermann, N. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon. Earth and Planetary Science Letters (2011). doi:http://dx.doi.org/10.1016/j.epsl.2011.06.019 CrossRefGoogle Scholar
Chen, G.S., Liu, Z., Clemens, S.C., Prell, W.L., and Liu, X. Modeling the time-dependent response of the Asian summer monsoon to obliquity forcing in a coupled GCM: a PHASEMAP sensitivity experiment. Climate Dynamics (2010). http://dx.doi.org/10.1007/s00382-010-0740-3 Google Scholar
Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., and Wang, X. Ice age terminations. Science 326, (2009). 248252.Google Scholar
Clemens, S.C., and Prell, W.L. One million year record of summer monsoon winds and continental aridity from the owen ridge site 722, northwest Arabian sea. Proceedings of the ocean drilling program. Scientific results Vol. 117, (1991). Google Scholar
Clemens, S.C., Murray, D.W., and Prell, W.L. Nonstationary phase of the plio-pleistocene Asian Monsoon. Science 274, (1996). 943948.Google Scholar
Clemens, S.C., and Prell, W.L. A 350,000 year summer-monsoon multiproxie stack from the Owen ridge, Northern Arabian Sea. Marine Geology 201, (2003). 3551.Google Scholar
Clemens, S.C., Prell, W.L., Sun, Y., Liu, Z., and Chen, G. Southern Hemisphere forcing of Pliocene δ 18 O and the evolution of Indo-Asian monsoons. Paleoceanography 23, (2008). PA4210 http://dx.doi.org/10.1029/2008PA001638 Google Scholar
Clemens, S.C., Prell, W.L., and Sun, Y. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ 18 O. Paleoceanography 25, (2010). PA4207 http://dx.doi.org/10.1029/2010PA001926 Google Scholar
Conan, S.M.H., and Brummer, G.J.A. Fluxes of planktic foraminifera in response to monsoonal upwelling on the Somalia Basin margin. Deep-Sea Research II 47, (2000). 22072227.Google Scholar
Conkright, M.E., Locarnini, R.A., Garcia, H.E., O'Brien, T.D., Boyer, T.P., Stephens, C., and Antonov, J.I. World Ocean Atlas 2001: objective analyses, data statistics and figures CD-ROM documentation. National Oceanographic Data Center Internal Report 17. (2001). US Department of Commerce, Silver Spring, MD USA. 17 pp.Google Scholar
De Vernal, A., and Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, (2008). 16221625.CrossRefGoogle ScholarPubMed
De Villiers, S., Greaves, M., and Elderfield, H. An intensity ratio calibration method for the accurate detremination of Mg/Ca and Sr/Ca of marine carbonates by ICP-AES. Geochemistry, Geophysics, Geosystems 3, (2002). Google Scholar
Ding, Y., and Chan, J.C.L. The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics 89, (2005). 117142. http://dx.doi.org/10.1007/s00703-005-0125-z Google Scholar
Ding, Y., Li, C., and Liu, Y. Overview of the South China Sea monsoon experiment. Advance Atmospheric Sciences 21, (2004). 343360. http://dx.doi.org/10.1007/BF02915563 Google Scholar
Duplessy, J.C., Labeyrie, L.D., Juillet-Leclerc, A., Maitre, F., Duprat, J., and Sarnthein, M. Surface salinity reconstruction of the North Atlantic Ocean during the last glacial maximum. Oceanologica Acta 14, (1991). 311324.Google Scholar
Ferguson, J.E., Henderson, G.M., Kucera, M., and Rickaby, R.E.M. Systematic change of foraminiferal Mg/Ca ratios across a strong salinity gradient. Earth and Planetary Science Letters 265, (2008). 153166.Google Scholar
Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A., Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., Hathorne, E., Kimoto, K., Klinkhammer, G., Labeyrie, L., Lea, D.W., Marchitto, T., Martınez-Botı, M.A., Mortyn, P.G., Ni, T., Nuernberg, D., Paradis, G., Pena, L., Quinn, T., Rosenthal, Y., Russell, A., Sagawa, T., Sosdian, S., Stott, L., Tachikawa, K., Tappa, E., Thunell, R., and Wilson, P.A. Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochemistry, Geophysics, Geosystems 9, (2008). http://dx.doi.org/10.1029/2008GC001974 Google Scholar
Guo, Z., Biscaye, P., Wei, L., Chen, X., Peng, S., and Liu, T. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters 2712, (2000). 17511754.Google Scholar
Guo, Z.T., Berger, A., Yin, Q.Z., and Qin, L. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of the Past 5, (2009). 2131.Google Scholar
Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, (2006). 508511.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, S., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stocker, T.F., Tison, J.L., Werner, M., and Wolff, E.W. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, (2007). 793796.Google Scholar
Kutzbach, J.E., Liu, X., Liu, Z., and Chen, G. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Climate Dynamics 30, (2008). 567579.Google Scholar
Lea, D.W., Mashiotta, T.A., and Spero, H.J. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica and Cosmochimica Acta 63, (1999). 23692379.Google Scholar
LeGrande, A.N., and Schmidt, G.A. Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters 33, (2006). L12604 http://dx.doi.org/10.1029/2006GL026011 Google Scholar
Lisiecki, L.E., and Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Quaternary Science Reviews 20, (2005). Google Scholar
Liu, T., and Tang, W. Oceanic Influence on the Precipitation in India and China as Observed by REMM and QuikSCAT, paper presented at The 2nd International Tropical Rainfall Measuring Mission Science Conference. (2004). Jpn. Aerosp. Explor. Agency, Tokyo.Google Scholar
Liu, X., Liu, Z., Clemens, S., Prell, W., and Kutzbach, J.E. A coupled model study of glacial Asian monsoon variability and Indian Ocean dipole. Journal of the Meteorological Society of Japan 85, (2007). 110.Google Scholar
Liu, Z., Trentesaux, A., Clemens, S.C., Colin, C., Wang, P., Huang, B., and Boulay, S. Clay mineral assemblages in the northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Marine Geology 201, (2003). 133146.Google Scholar
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.M., Raynaud, D., Stocker, T.F., and Chappellaz, J. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, (2008). 383386.Google Scholar
Lourens, L.J., Hilgen, F.J., Zachariasse, W.J., van Hoof, A.A.M., Antonarakou, A., and Vergnaud-Grazzini, C. Evaluation of the plio-Pleistocene astronomical time scale. Paleoceanography 11, (1996). 391413.Google Scholar
Lourens, L.J. Revised tuning of Ocean Drilling Program Site 964 and KC01B (Mediterranean) and implications for the δ 18 O, tephra, calcareous nannofossil, and geomagnetic reversal chronologies of the past 1.1 Myr. Paleoceanography 19, (2004). http://dx.doi.org/10.1029/2003PA000997 Google Scholar
Luthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., and Stocker, T.F. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, (2008). 379382.Google Scholar
Malaizé, B., Joly, C., Vénec-Peyré, M.T., Bassinot, F.C., Caillon, N., and Charlier, K. Phase lag between Intertropical Convergence Zone migration and subtropical monsoon onset over the northwestern Indian Ocean during Marine Isotopic Substage MIS 6.5. Geochemistry, Geophysics, Geosystems 7, (2006). 15252027.Google Scholar
Markovic, S.B., Hambach, U., Catto, N., Jovanovic, M., Buggle, B., Machalett, B., Zoller, L., Glaser, B., and Frechen, M. The middle and late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quaternary International 198, (2009). 255266.Google Scholar
Mathien-Blard, E., and Bassinot, F. Salinity bias on the foraminifera Mg/Ca thermometry: Correction procedure and implications for past ocean hydrographic reconstructions. Geochemistry, Geophysics, Geosystems 10, (2009). http://dx.doi.org/10.1029/2008GC002353 Google Scholar
Monterey, G.I., and Levitus, S. Climatological cycle of mixed layer depth in the world ocean. (1997). U.S. Gov. Printing Office, NOAA NESDIS, 5 pp.Google Scholar
Masson, V., Braconnot, P., Jouzel, J., Noblet, N., Cheddadi, R., and Marchal, O. Simulation of intense monsoons under glacial conditions. Geophysical Research Letters 27, (2000). 17471750.CrossRefGoogle Scholar
Nürnberg, D., Bijma, J., and Hemleben, C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochimica and Cosmochimica Acta 60, (1996). 803814.Google Scholar
Paillard, D., Labeyrie, L.D., and Yiou, P. Macintosh program performs time-series analysis. EOS. Transactions of the American Geophysical Union (1996). 77379.Google Scholar
Park, S.C., Sohn, B.J., and Wang, B. Satellite assessment of divergent water vapor transport from NCEP, ERA40, and JRA25 reanalyses over the Asian summer monsoon region. Journal of Meteorological Society of Japan 85, (2007). 615632. http://dx.doi.org/10.2151/jmsj.85.615 Google Scholar
Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. Numerical Recipes. (1990). Cambridge Univ Press, Google Scholar
Raymo, M.E., Oppo, D.W., and Curry, W. The Mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanography 12, (1997). 546559. http://dx.doi.org/10.1029/97PA01019 Google Scholar
Reichart, G.J., Lourens, L.J., and Zachariasse, W.J. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years. Paleoceanography 13, (1998). 607621.Google Scholar
Rossignol-Strick, M. African monsoons, an immediate climate response to orbital insolation. Nature 304, (1983). 4649.Google Scholar
Rossignol-Strick, M., Paterne, M., Bassinot, F.C., Emeis, K.C., and De Lange, G.J. An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392, (1998). 269272.Google Scholar
Rostek, F., Ruhland, G., Bassinot, F., Muller, P., Labeyrie, L., Lancelot, Y., and Bard, E. Reconstructing sea surface temperature and salinity using δ 18 O and alkenone records. Nature 364, (1993). 319321.Google Scholar
Rousseau, D.D., Wu, N., Pei, Y., and Li, F. Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr. Climate of the Past 5, (2009). 157169.Google Scholar
Schmidt, G.A. Error analysis of paleosalinity calculations. Paleoceanography 14, (1999). 422429.Google Scholar
Schott, F.A., Dengler, M., and Schoenefeldt, R. The shallow overturning circulation of the Indian Ocean. Progress in Oceanography 53, (2002). 57103.Google Scholar
Schott, F.A., Xie, S.P., and McCreary, J.P. Indian Ocean circulation and climate variability. Reviews of Geophysics 47, (2009). RG1002 http://dx.doi.org/10.1029/2007RG000245 Google Scholar
Shackleton, N.J., and Opdyke, N.D. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 100 kyrs and 1000 kyrs scale. Quaternary Research 3, (1973). 3954.Google Scholar
Shyu, J.P., Chen, M.P., Shieh, Y.T., and Huang, C.K. A Pleistocene paleoceanographic record from the north slope of the Spratly Islands, southern South China Sea. Marine Micropaleontology 42, (2001). 6193.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H., Lange, H., Arnold, M., and Duplessy, J.C. Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, (1993). 322324.Google Scholar
Suganuma, Y., Yamazaki, T., and Kanamatsu, T. South Asian monsoon variability during the past 800 kyr revealed by rock magnetic proxies. Quaternary Science Reviews 28, (2009). 926938.CrossRefGoogle Scholar
Sun, Y., Chen, J., Clemens, S., Liu, Q., Ji, J., and Tada, R. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau. Geochemistry, Geophysics, Geosystems 7, (2006). Q12Q02 http://dx.doi.org/10.1029/2006GC001287 Google Scholar
Tuenter, E., Weber, S.L., Hilgen, F.J., and Lourens, L.J. The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Global and Planetary Change 36, (2003). 219235.Google Scholar
Wang, L. Isotopic signals in two morphotypes of Globigerinoides ruber white from the South China Sea: implications for monsoon climate change during the last glacial cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 161, (2000). 381394.CrossRefGoogle Scholar
Wang, P., Tian, J., Cheng, X., Liu, X., and Xu, J. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology 31, (2003). 239242.Google Scholar
Wang, P., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jiana, Z., Kershawf, P., and Sarntheing, M. Evolution and variability of theAsian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews 24, (2005). 595629. http://dx.doi.org/10.1016/j.quascirev.2004.10.002 Google Scholar
Wang, Y., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, (2008). 10901093.Google Scholar
Webster, P.J., Magafia, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., and Yasunari, T. Monsoons: processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103, (1998). 14,45114,510.Google Scholar
Wyrwoll, K.H., Liu, Z., Chen, G.S., Kutzbach, J.E., and Liu, X. Model sensitivity of the Australian summer monsoon to Milankovitch insolation variations. Quaternary Science Reviews 26, (2007). 30433057.Google Scholar
Yin, Q.Z., and Berger, A. Insolation and CO2 contribution to the interglacial climate before and after the mid-Brunhes event. Nature Geoscience 3, (2010). 243246.Google Scholar
Yin, Q.Z., and Berger, A. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years. Climate Dynamics (2011). http://dx.doi.org/10.1007/s00382-011-1013-5 Google Scholar
Yin, Q.Z., Berger, A., and Crucifix, M. Individual and combined effects of ice sheets and precession on MIS-13 climate. Climate of the Past 5, (2009). 229243.Google Scholar
Yin, Q.Z., Berger, A., Driesschaert, E., Goosse, H., Loutre, M.F., and Crucifix, M. The Eurasian ice sheet reinforces the East Asian summer monsoon during the interglacial 500 000 years ago. Climate of the Past 4, (2008). 7990.Google Scholar
Yin, Q.Z., and Guo, Z.T. Strong summer monsoon during the cool MIS-13. Climate of the Past 4, (2008). 2934.Google Scholar
Ziegler, M., Lourens, L.J., Tuenter, E., and Reichart, G.J. High Arabian Sea productivity conditions during MIS 13 — odd monsoon event or intensified overturning circulation at the end of the Mid-Pleistocene transition?. Climate of the Past 6, (2010). 6376.Google Scholar
Ziegler, M., Lourens, L.J., Tuenter, E., Hilgen, F., Reichart, G.J., and Weber, N. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation. Paleoceanography 25, (2010). PA3213 http://dx.doi.org/10.1029/2009PA001884 Google Scholar
Ziegler, M., Tuenter, E., and Lourens, L.J. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews 29, (2010). http://dx.doi.org/10.1016/j.quascirev.2010.03.011 Google Scholar
Supplementary material: PDF

Caley et al. Supplementary Material

Supplementary Material

Download Caley et al. Supplementary Material(PDF)
PDF 774.4 KB