Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T20:41:13.285Z Has data issue: false hasContentIssue false

Major hydrological regime change along the semiarid western coast of South America during the early Holocene

Published online by Cambridge University Press:  08 September 2012

Cristina Ortega*
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
Gabriel Vargas
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Plaza Ercilla 803, Santiago, Chile
José A. Rutllant
Affiliation:
Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2002, Santiago, Chile Centro de Estudios Avanzados en Zonas Áridas, Raúl Bitrán s/n, Colina El Pino, La Serena, Chile
Donald Jackson
Affiliation:
Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto 1045, Santiago, Chile
César Méndez
Affiliation:
Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Ignacio Carrera Pinto 1045, Santiago, Chile
*
Corresponding author. Email Address:crortega@ing.uchile.cl

Abstract

Water availability in the semiarid western coast of Chile (30–32°S) is conditioned by high interannual precipitation variability, reflecting the transition between arid subtropical and moist mid-latitude climates in the Southeastern Pacific Ocean. A paleoclimate reconstruction based on the latest Pleistocene–Holocene geological record from the Quebrada Santa Julia archeological site in Chile (31°50′S) and on modern meteorological mechanisms producing alluvial episodes in this region indicates a major change in the rainfall regime shortly after 8600 cal yr BP. This, together with other paleoclimate proxies along the west coast of South America (34°–14°S), suggests La Niña-like conditions 13,000–8600 cal yr BP. Based on sedimentological and geomorphologic evidence, we hypothesized that the absence of heavy rainfall events in northern Chile and the new hydrological regime that prevailed ca. 8600–5700 cal yr BP in north-central Chile resulted from an increase in the large-scale westerly flow over central Chile, as expected in near-neutral ENSO conditions. This atmospheric circulation anomaly is compatible with an equatorward shift of the influence of the Southeast Pacific Subtropical Anticyclone relative to the early Holocene, prior to the onset of modern ENSO variability.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carré, M., Azzoug, M., Bentaleb, I., Chase, B.M., Fontugne, M., Jackson, D., Ledru, M., Maldonado, A., Sachs, J.P., and Schauer, A.J. Mid-Holocene mean climate in the south eastern Pacific and its influence on South America. Quaternary International 253, (2011). 5566.CrossRefGoogle Scholar
del-Val, E., Armesto, J.J., Barbosa, O., Christie, D.A., Gutiérrez, A., Jones, C., Marquet, P., and Weathers, K. Rain forest islands in the Chilean semiarid region: fog-dependency, ecosystem persistence and tree regeneration. Ecosystems 9, (2006). 113.CrossRefGoogle Scholar
Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., and Tuzzi, E. Record of the early Holocene warming in a laminated sediment core from Cape Hallett Bay (Northern Victoria Land, Antarctica). Global and Planetary Change 45, (2005). 193206.Google Scholar
Fuenzalida, H., Sanchez, R., and Garreaud, R. A climatology of cut off lows in the Southern Hemisphere. Journal of Geophysical Research 110, (2005). D1801 http://dx.doi.org/10.1029/2005JD005934 Google Scholar
Garreaud, R. Configuraciones atmosféricas durante tormentas pluviales en Chile central. Meteorológica (Argentina) 19, (1995). 7381.Google Scholar
Garreaud, R., and Rutllant, J. Análisis meteorológico del los aluviones de Antofagasta y Santiago de Chile en el periodo 1991–1993. Atmosfera 9, (1996). 251271.Google Scholar
Garreaud, R., Barichivich, J., Christie, D.A., and Maldonado, A. Interannual variability of the coastal fog at Fray Jorge relict forests in semiarid Chile. Journal of Geophysical Research 113, (2008). G04011 CrossRefGoogle Scholar
Grosjean, M., Núñez, L., Cartajena, I., and Messerli, B. Mid-Holocene climate and culture change in the Atacama Desert, northern Chile. Quaternary Research 48, (1997). 239246.Google Scholar
Heusser, C.J. Ice age vegetation and climate of subtropical Chile. Palaeogeography, Palaeoclimatology, Palaeoecology 80, (1990). 107127.Google Scholar
Jackson, D. Datación radiocarbónica para una adaptación costera del Arcaico Temprano en el Norte Chico, Comuna de los Vilos. Boletín de la Sociedad Chilena de Arqueología 16, (1993). 2831.Google Scholar
Jackson, D., (2002). Cazadores y recolectores del Holoceno Medio del norte semiárido de Chile. Tesis para optar al grado de Magíster en Arqueología. Universidad de Chile, . Ms.Google Scholar
Jackson, D. Evaluating evidence of cultural associations of Mylodon in the semiarid region of Chile. Miotti, L., Salemme, M., and Flegenheirmer, N. Where the South Winds Blow, Ancient evidence of Paleo South Americans. (2003). Center for the Study of the First Americans, College Station. 7781.Google Scholar
Jackson, D., and Méndez, C. Primeras ocupaciones humanas en la costa del semiárido de Chile: patrón de asentamientos y subsistencia. Actas del XVI Congreso Nacional de Arqueología Chilena (2005). 493502.Google Scholar
Jackson, D., Méndez, C., Seguel, R., Maldonado, A., and Vargas, G. Initial occupation of the Pacific Coast of Chile during late Pleistocene times. Current Anthropology 48, (2007). 725731.Google Scholar
Jenny, B., Valero-Garcés, B.L., Villa-Martinez, R., Urrutia, R., Geyh, M.A., and Veit, H. Early to mid-Holocene aridity in central Chile and the southern westerlies: the Aculeo Lake record (34°S). Quaternary Research 58, (2002). 160170.Google Scholar
Jenny, B., Wilhelm, D., and Valero-Garcés, B.L. The southern westerlies in central Chile: Holocene precipitation estimated based on a water balance model for Laguna Aculeo (33°50′S). Climate Dynamics 20, (2003). 269280.Google Scholar
Kaiser, J., Lamy, F., and Hebbeln, D. A 70-kyr sea surface temperature record off southern Chile (ocean drilling program site 1233). Paleoceanography 20, (2005). PA4009 http://dx.doi.org/10.1029/2005PA001146 CrossRefGoogle Scholar
Kaiser, J., Schefuss, E., Lamy, F., Mohtadi, M., and Hebbeln, D. Glacial to Holocene changes in sea surface temperature and coastal vegetation in north central Chile: high versus low latitude forcing. Quaternary Science Reviews 27, (2008). 20642075.Google Scholar
Kalnay et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, (1996). 437470.Google Scholar
Keefer, D.K., deFrance, S.D., Moseley, M.E., Richardson, J.B. III, Satterlee, D.R., and Day-Lewis, A. Early maritime economy and El Niño events at Quebrada Tacahuay, Perú. Science 281, (1998). 18331835.CrossRefGoogle ScholarPubMed
Keefer, D.K., Moseley, M.E., and deFrance, S.D. A 35,000-year record of floods and debris flows in the Ilo region of southern Peru and its relation to El Niño events and great earthquakes. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 4177.Google Scholar
Kim, J.-H., Schneider, R.R., Hebbeln, D., Müller, P.J., and Wefer, G. Last deglacial sea-surface temperature evolution in the Southeast Pacific compared to climate changes on the South American continent. Quaternary Science Reviews 21, (2002). 20852097.Google Scholar
Koutavas, A., de Menocal, P.B., Olive, G.C., and Lynch-Stieglitz, J. El Niño-Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 34, (2006). 993996.Google Scholar
Kummerow, J. Aporte al conocimiento de las condiciones climáticas del bosque de Fray Jorge. Boletín Técnico, Facultad de Agronomía Universidad de Chile 24, (1966). 2124.Google Scholar
Lamy, F., Hebbeln, D., and Wefer, G. High-resolution marine record of climatic change in mid-latitude Chile during the last 28,000 years based on terrigenous sediment parameters. Quaternary Research 51, (1999). 8393.Google Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., and Wefer, G. High- and low-latitude climate control on the position of the southern Peru–Chile current during the Holocene. Paleoceanography 17, 2 (2002). 1028 http://dx.doi.org/10.1029/2001PA000727Google Scholar
Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H., and Stoner, J. Antarctic timing of surface water changes off Chile and Patagonian Ice Sheet response. Science 304, (2004). 19591962.Google Scholar
Lamy, F., Kaiser, J., Arz, H.W., Hebbeln, D., Ninnemann, U., Timm, O., Timmermann, A., and Toggweiler, J.R. Modulation of the bipolar seesaw in the Southeast Pacific during termination 1. Earth and Planetary Science Letters 259, (2007). 400413.CrossRefGoogle Scholar
Lamy, F., Kilian, R., Arz, H.W., Francois, J., Kaiser, J., Prange, M., and Steinke, T. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, (2010). 695699.Google Scholar
Maldonado, A., and Villagrán, C. Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of Chile. Quaternary Research 66, (2006). 246258.Google Scholar
Maldonado, A., Méndez, C., Ugalde, P., Jackson, D., Seguel, R., and Latorre, C. Early Holocene climate change and human occupation along the semiarid coast of north-central Chile. Journal of Quaternary Science 25, (2010). 14.CrossRefGoogle Scholar
Méndez, C., Jackson, D., and Seguel, R. Current evidence and radiocarbon chronology from Santa Julia late Pleistocene settlement in the semiarid coast of Chile (31°50′S). Current Research in the Pleistocene 24, (2007). 6869.Google Scholar
Mo, K.C., and Higgins, R.W. The Pacific South American modes and tropical convection during the southern hemisphere winter. Monthly Weather Review 126, (1998). 15811596.Google Scholar
Montecinos, A., and Aceituno, P. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Journal of Climate 16, (2003). 281296.2.0.CO;2>CrossRefGoogle Scholar
Montecinos, A., Kurgansky, M.V., Muñoz, C., and Takahashi, K. Non-ENSO rainfall variability in central Chile during austral winter. Theoretical and Applied Climatology 106, (2011). 557568.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T.Y., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162165.Google Scholar
Muñoz, R., and Garreaud, R. The coastal boundary layer diurnal cycle along north central Chile: observations and model sensitivities. 7th Conference on Coastal Atmospheric and Ocean Prediction and Processes, American Meteorological Society, San Diego, California, 10–13 Sept. (2007). Google Scholar
Ortlieb, L., Vargas, G., and Saliège, J.F. Marine radiocarbon reservoir effect along the northern Chile–southern Peru coast (14–24°S) throughout the Holocene. Quaternary Research 75, (2011). 91103.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwars, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abott, M.B., Enfield, D.B., and Newman, J.H. An ~ 15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, (1999). 516520.CrossRefGoogle ScholarPubMed
Roman, A., and Jackson, D. Dataciones por termoluminicencia de rocas de fogones de asentamientos arcaicos, Provincia del Choapa. Chungará 30, (1998). 4148.Google Scholar
Rutllant, J., and Fuenzalida, H. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, (1991). 6376.Google Scholar
Rutllant, J., Fuenzalida, H., Torres, R., and Figueroa, D. Interacción océano-atmósfera-tierra en la Región de Antofagasta (Chile, 23°S): Experimento DICLIMA. Revista Chilena de Historia Natural 71, (1998). 405427.Google Scholar
Rutllant, J., Fuenzalida, H., and Aceituno, P. Climate dynamics along the arid northern coast of Chile: the 1997–1998 Dinámica del Clima de la Región de Antofagasta (DICLIMA) experiment. Journal of Geophysical Research 108, (2003). 4538 Google Scholar
Sandweiss, D.H., Richardson, J.B., Reitz, E.J., Rollins, H.B., and Maasch, K.A. Geoarchaeological evidence from Peru for a 5000 years BP onset of El Niño. Science 273, (1996). 15311533.CrossRefGoogle Scholar
Smith, J.A., Hillenbrand, C., Kuhn, G., Larter, R.D., Graham, A.G.C., Ehrmann, W., Moreton, A.G., and Forwick, M. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea embayment. Quaternary Science Reviews 30, (2011). 488505.CrossRefGoogle Scholar
Strub, T., Mesías, J., Montecino, V., Rutllant, J., and Salinas, S. Coastal ocean circulation off western South America. Robinson, Allan R., Brink, Kenneth H. The Sea 11, (1998). 273313.Google Scholar
Urrutia, R., and Lanza, C. Catástrofes de Chile: 1541–1992. (1993). Editorial La Noria, Santiago, Chile.Google Scholar
Vargas, G., Ortlieb, L., and Rutllant, J. Aluviones históricos en Antofagasta y su relación con eventos El Niño/Oscilación del Sur. Revista Geológica de Chile 27, (2000). 157176.Google Scholar
Vargas, G., Rutllant, J., and Ortlieb, L. ENSO tropical–extratropical climate teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of western South America (17°–24°S). Earth and Planetary Science Letters 249, (2006). 467483.Google Scholar
Veit, H. Southern westerlies during the Holocene deduced from geomorphological and pedological studies in the Norte Chico, northern Chile (27–33°S). Palaeogeography, Palaeoclimatology, Palaeoecology 123, (1996). 107119.Google Scholar
Villagrán, C., and Varela, J. Palynological evidence for increased aridity on the central Chilean coast during the Holocene. Quaternary Research 34, (1990). 198207.Google Scholar
Villa-Martínez, R., Villagrán, C., and Jenny, B. The last 7500 cal yr BP of westerly rainfall in central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quaternary Research 60, (2003). 284293.CrossRefGoogle Scholar
Supplementary material: PDF

Ortega et al. Supplementary Material

Supplementary Material

Download Ortega et al. Supplementary Material(PDF)
PDF 124 KB