Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T09:00:56.133Z Has data issue: false hasContentIssue false

Late Pleistocene Climatic Variations at Achenheim, France, Based on a Magnetic Susceptibility and TL Chronology of Loess

Published online by Cambridge University Press:  20 January 2017

Denis-Didier Rousseau
Affiliation:
Paléoenvironnements et Palynologie, Institut des Sciences de l'Evolution—UMR CNRS 5554, Université Montpellier II, case 61, place E. Bataillon, 34095, Montpellier cedex 5, France; and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, 10964
Ludwig Zöller
Affiliation:
Forschungsstelle Archäometrie der Heidelberger Akademie der Wissenschaften am Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany
Jean-Pierre Valet
Affiliation:
Laboratoire de Géomagnétisme interne et Paléomagnétisme, Institut de Physique du Globe de Paris, tour 24-25, Boite 089, 4 place Jussieu, 75252, Paris cedex 05, France

Abstract

New field investigations of the Achenheim sequence (Alsace, France) allow for the characterization of variations in the low-field magnetic susceptibility over most of the last climatic cycle, i.e., the past 130,000 yr. New stratigraphic data and thermoluminescence measurements permit reassessment of the previous chronological interpretation of the Upper Pleistocene at Achenheim. A high-resolution analysis of magnetic susceptibility discloses the occurrence of a fine-grained “marker” horizon which was also found recently in another section. This horizon is interpreted as a small-scale dust layer deposited prior to the main interval of loess deposition. The horizon, deposited at the marine isotope stage (MIS) 5/4 boundary, has been found in other loess sequences and is especially prevalent in central Europe. It is characterized by low susceptibility values and a grayish color. New thermoluminescence dates indicate that the loess deposition took place after the MIS 5/4 boundary, i.e., after 70,000 yr. These results are consistent with the Greenland GRIP ice-core dust record which also demonstrates a dusty atmosphere after 72,000 yr ago. On a more regional scale, the Achenheim loess sequence demonstrates a reliable correlation between the western side of the Eurasian loess belt and the dust record of the Greenland ice cores.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J., 1985. Thermoluminescence Dating. Academic Press, San Diego. Google Scholar
Aitken, M.J., Huxtable, J., Debenham, N.C., 1986. Thermoluminescence dating in the Paleolithic burned flint, stalagmitic calcite and sediment. Bulletin Association française d'Etude du Quaternaire. 26 714.Google Scholar
An, Z.S., Kukla, G., Porter, S.C., Xiao, J.L., 1991. Magnetic susceptibility evidence of monsoon variation on the loess plateau of Central China during the last 130,000 years. Quaternary Research. 36 2936.Google Scholar
Antoine, P., Munaut, A.V., Sommé, J., 1994. Réponse des environnements à l'évolution climatique du Début Glaciaire weichsélien: Données de la France du Nord Ouest. Quaternaire. 5 151156.CrossRefGoogle Scholar
Antoine, A., Rousseau, D. D., Lautridou, J. P., Hatté, C, Climatic history of the Last Interglacial–Glacial climatic cycle from the loess and paleosols sequence at St. Pierre-lès-Elbeuf (Normandy, France), Boreas. Google Scholar
Berger, G.W., 1994. Thermoluminescence dating older than ca 100 ka. Quaternary Geochronology (Quaternary Science Reviews). 13 445455.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahi-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjöprnsdottir, A.E., Jouzel, J., Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature. 364 218220.Google Scholar
Forster, T., Heller, F., 1994. Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate. Earth Planetary Science Letters. 128 501512.Google Scholar
Nature. 364 1993 203207.CrossRefGoogle Scholar
Haesaerts, P., Juvigné, E., Kuyl, O., Mucher, H., Roebroecks, W., 1981. Compte rendu de l'excurtson du 13 Juin 1981, en Hesbaye et au Limbourg Néerlandais, consacrée à la chronostratigraphie des loess du Pléistocène supérieur. Annales de la Société Géologique de Belgique. 104 223240.Google Scholar
Heim, J., Lautridou, J.P., Maucorps, J., Puisségur, J.J., Sommé, J., Thévenin, A., 1982. Achenheim: une séquence type des loess du Pléistocene moyen et supérieur. Bulletin Association française d'Etude du Quaternaire. 10–11 147159.Google Scholar
Heller, F., Liu, T.S., 1984. Magnetism of Chinese loess deposits. Geophysical Journal. 77 125141.Google Scholar
Hovan, S.A., Rea, D.K., 1991. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography. 6 349370.CrossRefGoogle Scholar
Juvigné, E., Wintle, A.G., 1988. A new chronostratigraphy of the Late Weichselian loess units in Middle Europe based on thermoluminescence dating. Eiszeitalter und Gegenwart. 38 94105.Google Scholar
Juvigné, E., Haesaerts, P., Metsdagh, H., Balescu, S., 1996. Révision du stratotype loessique de Kesselt (Limbourg, Belgique). Comptes Rendus de Académie des Sciences Paris. 323 801807.Google Scholar
Krbetschek, M.R., Rieser, U., Stolz, W., 1996. Optical dating: Some luminescence properties of natural feldspars. Radiation Protection Dosimetry. 66 407412.Google Scholar
Kukla, G., 1977. Pleistocene land-sea correlations. 1. Europe. Earth-Science Reviews. 13 307374.CrossRefGoogle Scholar
Kukla, G., 1987. Loess stratigraphy in central China. Quaternary Science Reviews. 6 191219.CrossRefGoogle Scholar
Kukla, G., An, Z.S., Melice, J.L., Gavin, J., Xiao, J.L., 1990. Magnetic susceptibility record of Chinese Loess. Transactions Royal Society Edinburgh Earth Sciences. 81 263288.Google Scholar
Kukla, G., An, Z.S., 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology. 72 203225.CrossRefGoogle Scholar
Kukla, G., Lozek, V., 1961. Loess and related deposits. In Survey of Czechoslovak Quaternary. Czwartozed Europy Srodkowej i Wschodniej. INQUA 6th International Congress Institut Geolology Prace. 34 1128.Google Scholar
Kukla, G., Heller, F., Liu, X.M., Xu, T.C., Liu, T.S., An, Z.S., 1988. Pleistocene climates in China dated by magnetic susceptibility. Geology. 16 811814.Google Scholar
Le Meur, I., 1994. Propriétés magnétiques de séquences de loess francais. University Paris VII.Google Scholar
Maher, B.A., Taylor, R.H., 1988. Formation of ultrafine-grained magnetite in soils. Nature. 336 368370.Google Scholar
Maher, B.A., Thompson, R., 1991. Mineral magnetic record of the Chinese loess and paleosols. Geology. 19 36.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J.J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the Ice ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research. 27 129.Google Scholar
Mejdahl, V., 1985. Thermoluminescence dating of partially bleached sediments. Nuclear Tracks and Radiation Measurements. 10 711715.Google Scholar
Nambi, K.S.V., Aitken, M.J., 1986. Annual dose convertion factors for TL and ESR dating. Archaeometry. 28 202205.Google Scholar
Petit, J.R., Mounier, L., Jouzel, J., Korotkevitch, Y.S., Kotlyakov, V.I., Lorius, C., 1990. Palaeoclimatological chronological implications of the Vostok core dust record. Nature. 343 5658.Google Scholar
Porter, S., An, Z.S., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature. 375 305308.CrossRefGoogle Scholar
Proszynska-Bordas, H., Stanska-Proszynska, W., Proszynski, M., 1988. TL dating of partially bleached sediments by the regeneration method. Quaternary Science Reviews. 7 265271.CrossRefGoogle Scholar
Puisségur, J.J., 1978. Les mollusques des séries loessiques à Achenheim. Recherches géographiques à Strasbourg. 7 7196.Google Scholar
Rousseau, D.D., 1987. Paleoclimatology of the Achenheim series (middle and upper Pleistocene, Alsace, France). A malacological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology. 59 293314.Google Scholar
Rousseau, D.D., 1991. Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research. 36 195209.Google Scholar
Rousseau, D.D., Kukla, G., 1994. Late Pleistocene climate record in the Eustis loess section, Nebraska, USA, based on land snail assemblages and magnetic susceptibility. Quaternary Research. 42 176187.Google Scholar
Rousseau, D.D., Puisségur, J.J., 1990. A 350,000 years climatic record from the loess sequence of Achenheim, Alsace, France. Boreas. 19 203216.Google Scholar
Rousseau, D. D., Kukla, G., Zöller, L, Early Weichselian dust storm layer at Achenheim in Alsace, France, Boreas. Google Scholar
Rousseau, D.D., Soutarmin, N., Gaume, L., Antoine, P., Lang, M., Lautridou, J.P., Sommé, J., Zöller, L., Lemeur, I., Meynadier, L., Fontugne, M., Wintle, A., 1994. Histoire du dernier cycle climatique enregistrée dans la séquence loessique d'Achenheim (Alsace, France), à partir de la susceptibilité magnétique. Comptes Rendus de l'Académie des Sciences de Paris. 319 551558.Google Scholar
Schumacher, E., 1912. Achenheim als geologisch-praehistorische Station. Die Vogesen. 8 144162.Google Scholar
Sommé, J., 1990. Enregistrements-réponses des environnements sédimentaires et stratigraphie du Quaternaire. Exemples d'Achenheim (Alsace) et de La Grande Pile (Vosges). Quaternaire. 1 2532.Google Scholar
Sommé, J., Lautridou, J., Heim, P.J., Maucorps, J., Puisségur, J.J., Rousseau, D.D., Thévenin, A., Van Vliet-Lanoé, B., 1986. Le cycle climatique du Pléistocène supérieur dans les loess d'Alsace à Achenheim. Bulletin Association française d'Etude du Quaternaire. 25–26 97104.Google Scholar
Verosub, K.L., Fine, P., Singer, M.J., Tenpas, J., 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess–paleosol sequences. Geology. 21 10111014.Google Scholar
Wernert, P., 1957. Stratigraphie paléontologique et préhistorique des sédiments quaternaires d'Alsace, Achenheim. Mémoire Service Carte géologique Alsace-Lorraine. 14 295.Google Scholar
Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., 1990. Partly pedogenetic origin of magnetic variations in Chinese loess. Nature. 346 737739.Google Scholar
Zöller, L., 1995. Würm- and Risslöss-Stratigraphie und Thermolumineszenz-Datierung in Süddeutschland und angrenzenden Gebieten. University of Heidelberg.Google Scholar
Zöller, L., Oches, E.A., McCoy, W.D., 1994. Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology (Quaternary Science Reviews). 13 465472.Google Scholar
Zöller, L., Rousseau, D. D., Jäger, K. D., Kukla, G, Last interglacial, Lower Weichselian and Middle Weichselian, A comparative study from the Upper Rhine area and Thuringia. Zeitschrift f. Geomorphologie Neue Folge.Google Scholar
Zöller, L., Wagner, G.A., 1990. Thermoluminescence dating of loess: Recent developments. Quaternary International. 7/8 119128.Google Scholar