Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:38:39.698Z Has data issue: false hasContentIssue false

Late Holocene climatic changes in Tierra del Fuego based on multiproxy analyses of peat deposits.

Published online by Cambridge University Press:  20 January 2017

Dmitri Mauquoy*
Affiliation:
Palaeobiology Program, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden
Maarten Blaauw
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
Bas van Geel
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
Ana Borromei
Affiliation:
Departamento de Geologı́a, Universidad Nacional del Sur, San Juan 670 (8000), Bahı́a Blanca, Argentina
Mirta Quattrocchio
Affiliation:
Departamento de Geologı́a, Universidad Nacional del Sur, San Juan 670 (8000), Bahı́a Blanca, Argentina
Frank M. Chambers
Affiliation:
Centre for Environmental Change and Quaternary Research, GEMRU, University of Gloucestershire, Cheltenham GL50 4AZ, UK
Göran Possnert
Affiliation:
Ångström Laboratory, Division of Ion Physics, S-75121 Uppsala, Sweden
*
*Corresponding author. Fax: +31-20-525-7832.E-mail address:mauquoy@science.uva.nl (D. Mauquoy).

Abstract

A ca. 1400-yr record from a raised bog in Isla Grande, Tierra del Fuego, Argentina, registers climate fluctuations, including a Medieval Warm Period, although evidence for the ‘Little Ice Age’ is less clear. Changes in temperature and/or precipitation were inferred from plant macrofossils, pollen, fungal spores, testate amebae, and peat humification. The chronology was established using a 14C wiggle-matching technique that provides improved age control for at least part of the record compared to other sites. These new data are presented and compared with other lines of evidence from the Southern and Northern Hemispheres. A period of low local water tables occurred in the bog between A.D. 960–1020, which may correspond to the Medieval Warm Period date range of A.D. 950–1045 generated from Northern Hemisphere tree-ring data. A period of cooler and/or wetter conditions was detected between ca. A.D. 1030 and 1100 and a later period of cooler/wetter conditions estimated at ca. cal A.D. 1800–1930, which may correspond to a cooling episode inferred from Law Dome, Antarctica.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, A.C., Markgraf, V., Villagran, C., (1991). Late Quaternary climatic history of the Chilean Channels based on fossil pollen and beetle analyses, with an analysis of the modern vegetation and pollen rain. Journal of Quaternary Science. 6, 279291.Google Scholar
Barber, K.E., Chambers, F.M., Maddy, D., Stoneman, R., Brew, J.S., (1994). A sensitive high-resolution record of late Holocene climatic change from a raised bog in northern England. The Holocene. 4, 198205.CrossRefGoogle Scholar
Bennett, K.D., (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytologist. 132, 155170.CrossRefGoogle Scholar
Birks, H.J.B., Gordon, A.D., (1985). Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
Blackford, J.J., Chambers, F.M., (1993). Determining the degree of peat decomposition for peat based palaeoclimatic studies. International Peat Journal. 5, 724.Google Scholar
Blaauw, M., van Geel, B., Heuvelink, G.B.M., Mauquoy, D., van der Plicht, J., (2003). A numerical approach to 14C wiggle-match dating of organic deposits: best fits and confidence intervals. Quaternary Science Reviews. 22, 14851500.Google Scholar
Boise, J.R., (1989). On Hadrospora, a new genus in the Phaeosphaeriaceae, and Byssothecium alpestris in the Dacampiaceae. Memoirs of the New York Botanical Garden. 49, 308310.Google Scholar
Boninsegna, J.A., Keegan, J., Jacoby, G.C., D'Arrigo, R.D., Holmes, R.L., (1989). Dendrochronological studies in Tierra del Fuego, Argentina. Quaternary of South America and Antarctic Peninsula. 7, 305326.Google Scholar
Borromei, A.M., (1995). Análisis polı́nico de una turbera holocénica en el Valle de Andorra, Tierra del Fuego, Argentina. Revista Chilena de Historia Natural. 68, 311319.Google Scholar
Broecker, W.S., (2001). Was the Medieval Warm Period global?. Science. 291, 14971499.CrossRefGoogle ScholarPubMed
Charman, D.J., Hendon, D., Packman, S., (1999). Multiproxy surface wetness records from replicate cores on an ombrotrophic mire: implications for Holocene palaeoclimate records. The Holocene. 14, 451463.Google Scholar
Crowley, C.J., Lowery, T.S., (2000). How warm was the Medieval Warm Period?. Ambio. 29, 5154.CrossRefGoogle Scholar
Dahl-Jensen, D., Morgan, V.I., Elcheikh, A., (1999). Monte Carlo inverse modelling of the Law Dome (Antarctica) temperature profile. Annals of Glaciology. 29, 145150.Google Scholar
Domack, E., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C., ODP Leg 178 Scientific Party(2001). Chronology of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the circum-Antarctic. The Holocene. 11, 19.CrossRefGoogle Scholar
Esper, J., Cook, E.R., Schweingruber, F.H., (2002). Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science. 295, 22502253.Google Scholar
Fægri, K., Iversen, J., (1989). Textbook of Pollen Analysis. Wiley, Chichester.Google Scholar
Glasser, N.F., Hambrey, M.J., Aniya, M., (2002). An advance of Soler Glacier, North Patagonian Icefield, at c. AD 1222–1342. The Holocene. 12, 113120.Google Scholar
Hendon, D., Charman, D.J., (1997). The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene. 7, 199205.Google Scholar
Heusser, C.J., (1971). Pollen and Spores of Chile. Univ. of Arizona Press, Tucson.Google Scholar
Heusser, C.J., (1989). Late Quaternary vegetation and climate of Southern Tierra del Fuego. Quaternary Research. 31, 396406.CrossRefGoogle Scholar
Heusser, C.J., (1995). Three Late Quaternary pollen diagrams from Southern Patagonia and their palaeoecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. 118, 124.CrossRefGoogle Scholar
Heusser, C.J., (1998). Deglacial paleoclimate of the American sector of the Southern Ocean: Late Glacial–Holocene records from the latitude of Canal Beagle (55 degrees S), Argentine Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology. 141, 277301.CrossRefGoogle Scholar
Kilian, M.R., van der Plicht, J., van Geel, B., (1995). Dating raised bogs: new aspects of AMS 14C wiggle matching, a reservoir effect and climatic change. Quaternary Science Reviews. 14, 959966.Google Scholar
Kilian, M.R., van Geel, B., van der Plicht, J., (2000). 14C AMS wiggle matching of raised bog deposits and models of peat accumulation. Quaternary Science Reviews. 19, 10111033.Google Scholar
Kuylenstierna, J.L., Rosqvist, G.C., Holmlund, P., (1996). Late-Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile. The Holocene. 6, 353358.CrossRefGoogle Scholar
Luckman, B.H., Villalba, R., (2001). Assessing the synchroneity of glacier fluctuations in the western cordillera of the Americas during the last millennium. Markgraf, V., Interhemispheric Climate Linkages. Academic Press, San Diego., 119140.Google Scholar
Markgraf, V., (1983). Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate, and arid environments in Argentina. Palynology. 7, 4370.CrossRefGoogle Scholar
Markgraf, V., (1993). Younger Dryas in southernmost South America—an update. Quaternary Science Reviews. 12, 351355.Google Scholar
Markgraf, V., D'Antoni, H., (1978). Pollen Flora of Argentina. Univ. of Arizona Press, Tucson.Google Scholar
Mauquoy, D., Engelkes, T., Groot, M.H.M., Markesteijn, F., Oudejans, M.G., van der Plicht, J., van Geel, B., (2002). High-resolution records of late Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs. Palaeogeography, Palaeoclimatology, Palaeoecology. 186, 275310.Google Scholar
McCulloch, R.D., Davies, S.J., (2001). Late-Glacial and Holocene palaeoenvironmental change in the central Strait of Magellan, southern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology. 173, 143173.Google Scholar
Mook, W.G., (1986). Recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference. Radiocarbon. 28, 799.CrossRefGoogle Scholar
Pals, J.P., van Geel, B., Delfos, A., (1980). Paleoecological studies in the Klokkeweel bog near Hoogkarspel (Noord Holland). Review of Palaeobotany. 30, 371418.CrossRefGoogle Scholar
Pendall, E., Markgraf, V., White, J.W.C., Dreier, M., (2001). Multiproxy record of late Pleistocene–Holocene climate and vegetation changes from a peat bog in Patagonia. Quaternary Research. 55, 168178.Google Scholar
Quattrocchio, M.E., Borromei, A.M., (1998). Paleovegetational and paleoclimatic changes during the late Quaternary in southwestern Buenos Aires Province and southern Tierra del Fuego (Argentina). Palynology. 22, 6782.CrossRefGoogle Scholar
Rabassa, J., Coronato, A., Bujalesky, G., Salemme, M., Roig, C., Meglioli, A., Heusser, C., Gorillo, S., Roig, F., Borromei, A., Quattrocchio, M., (2000). Quaternary of Tierra del Fuego, Southernmost South America: an updated review. Quaternary International. 68-71, 217240.Google Scholar
Roig, F. Jr., Roig, C., Rabassa, J., Boninsegna, J., (1996). Fuegian floating tree-ring chronology from subfossil Nothofagus wood. The Holocene. 6, 469476.Google Scholar
Speranza, A., van der Plicht, J., van Geel, B., (2000). Improving the time control of the Subboreal/Subatlantic transition in a Czech peat sequence by 14C wiggle-matching. Quaternary Science Reviews. 19, 15891604.CrossRefGoogle Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores. 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., Spurk, M., (1998). INTCAL98 Radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon. 40, 10411083.CrossRefGoogle Scholar
van Geel, B., (1972). Palynology of a section from the raised peat bog “Wietmarscher Moor” with special reference to fungal remains. Acta Botanica Neerlandica. 21, 261284.Google Scholar
van Geel, B., (1978). A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analyses of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology. 25, 1120.Google Scholar
van Geel, B., Mook, W.G., (1989). High resolution 14C dating of organic deposits using natural atmospheric 14C variations. Radiocarbon. 31, 151155.CrossRefGoogle Scholar
Villalba, R., (1990). Climatic fluctuations in Northern Patagonia in the last 1000 years as inferred from tree-ring records. Quaternary Research. 34, 346360.Google Scholar
Villalba, R., (1994). Tree-ring and glacial evidence for the Medieval Warm Epoch and the ‘Little Ice Age’ in southern South America. Climatic Change. 26, 183197.Google Scholar
White, J.W.C., Ciais, P., Figge, R.A., Kenny, R., Markgraf, V., (1994). A high-resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature. 367, 153156.Google Scholar