Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T18:54:17.517Z Has data issue: false hasContentIssue false

A Late Holocene climate reconstruction from the high-altitude Lake Gölcük sedimentary records, Isparta (SW Anatolia)

Published online by Cambridge University Press:  26 June 2023

Iliya Bauchi Danladi*
Affiliation:
Department of Geological Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, 48000, Kötekli, Muğla, Turkey University of Bonn, Steinmann Institute of Geology, Mineralogy and Paleontology, Nussallee 8, 53115, Bonn, Germany
Sena Akçer-Ön
Affiliation:
Department of Geological Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, 48000, Kötekli, Muğla, Turkey
Thomas Litt
Affiliation:
University of Bonn, Steinmann Institute of Geology, Mineralogy and Paleontology, Nussallee 8, 53115, Bonn, Germany
Z. Bora Ön
Affiliation:
Department of Geological Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, 48000, Kötekli, Muğla, Turkey
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, Department of Physics, ETH Zürich, Zürich, CH 8093, Switzerland
*
*Corresponding author email address: iliyadbauchi@yahoo.com

Abstract

A high-resolution multiproxy lake sediment dataset, comprising lithology, radiography, μXRF elemental, magnetic susceptibility (MS), δ13C, and δ18O measurements since ca. AD 400 is presented in this study. Changes in lithology, radiography, magnetic susceptibility (MS), δ13C, and δ18O reflect wet/dry climate periods, whereas variability in log(Ca/K) can reflect warm/cold climate periods. Analyses of the multiproxy results allow the distinction of several climate periods, which may be associated with climatic phenomena such as changes in North Atlantic Oscillation (NAO) and/or solar activity. The influence of NAO−/NAO+ (negative/positive) is suggested to be related with the southward/northward displacement of the storm tracks resulting from the NAO−/NAO+ phases. For solar activity, the influence is explained through a direct increase in solar heating leading to calcite precipitation. The Dark Ages Cold Period (DACP, AD 450–750) reflects cold-dry climate conditions at this site, indicative of a positive North Atlantic Oscillation (NAO+) and low solar activity. The Medieval Climate Anomaly (MCA, AD 950–1250) exhibits wet-dry-wet and warm-cold-warm climate conditions. The wet/dry periods likely are associated with NAO−/NAO+, respectively, and the warm/cold period may reflect relatively high/low solar activity. The Little Ice Age (LIA, AD 1400–1850) is characterized by dry and cold climate conditions, suggesting the influence of NAO+ and low solar activity. Comparison of the results of this study with local and regional results suggests a generally similar climate pattern, which is indicative of similar climate mechanisms. The contradictions can be associated with age-related uncertainties, orographic differences, and/or other regional teleconnections.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrantes, F., Rodrigues, T., Rufino, M., Salgueiro, E., Oliveira, D., Gomes, S., Oliveira, P., et al., 2017. The climate of the Common Era off the Iberian Peninsula. Climate of the Past 13, 19011918.CrossRefGoogle Scholar
Ait Brahim, Y., Khodri, M., Sifeddine, A., Jochum, K.P., Beraaouz, E.H., Wassenburg, J.A., Pérez-Zanón, N., et al., 2017. Speleothem records decadal to multidecadal hydroclimate variations in southwestern Morocco during the last millennium. Earth and Planetary Science Letters 476, 110.CrossRefGoogle Scholar
Akçer Ön, S., 2017. Küçük Buz Çağı’nda Güneş Etkisine Bağlı İklim Değişimleri: Köyceğiz Gölü Çökel Kayıtları (GB Anadolu) [Climatic variability related to solar activity during the Little Ice Age: Lake Köyceğiz sediment records (SW Anatolia)]. Türkiye Jeoloji Bülteni 60, 569588. [in Turkish]Google Scholar
Akkemik, Ü., Aras, A., 2005. Reconstruction (1689–1994 AD) of April-August precipitation in the southern part of central Turkey. International Journal of Climatology 25, 537548.CrossRefGoogle Scholar
Andres, H.J., Peltier, W.R., 2016. Regional influences of natural external forcings on the transition from the Medieval climate anomaly to the Little Ice Age. Journal of Climate 29, 57795800.CrossRefGoogle Scholar
Auger, J.D., Mayewski, P.A., Maasch, K.A., Schuenemann, K.C., Carleton, A.M., Birkel, S.D., Saros, J.E., 2019. 2000 years of North Atlantic-Arctic climate. Quaternary Science Reviews, 216, 117.CrossRefGoogle Scholar
Baker, A., Hellstrom, J.C., Kelly, B.F.J., Mariethoz, G., Trouet, V., 2015. A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Scientific Reports 5, 10307. https://doi.org/10.1038/srep10307.CrossRefGoogle ScholarPubMed
Bakker, J., Kaniewski, D., Verstraeten, G., de Laet, V., Waelkens, M., 2012. Numerically derived evidence for late-Holocene climate change and its impact on human presence in the southwest Taurus Mountains, Turkey. The Holocene 22, 425438.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., 1998. Middle to Late Holocene (6,500 yr. period) paleoclimate in the Eastern Mediterranean region from stable isotopic composition of speleothems from Soreq Cave, Israel. In: Issar, A.S., Brown, N. (Eds.), Water, Environment and Society in Times of Climatic Change. Water Science and Technology Library, Vol. 31. Springer, Dordrecht, pp. 203214. https://doi.org/10.1007/978-94-017-3659-6_9CrossRefGoogle Scholar
Barlas Şimşek, F., Çağatay, M.N., 2018. Late Holocene high resolution multi-proxy climate and environmental records from Lake Van, eastern Turkey. Quaternary International 486, 5772.CrossRefGoogle Scholar
Blaauw, M., Christen, J. A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bookman, R., Enzel, Y., Agnon, A., Stein, M., 2004. Late Holocene lake levels of the dead sea. Geological Society of America Bulletin 116, 555571.CrossRefGoogle Scholar
Bozkurt, D., Sen, O.L., 2011. Precipitation in the Anatolian Peninsula: sensitivity to increased SSTs in the surrounding seas. Climate Dynamics 36, 711726.CrossRefGoogle Scholar
Bozyiğit, C., Eriş, K.K., Sicre, M.A., Çağatay, M.N., Uçarkuş, G., Klein, V., Gasperini, L., 2022. Middle–Late Holocene climate and hydrologic changes in the Gulf of Saros (NE Aegean Sea). Marine Geology 443, 106688. https://doi.org/10.1016/j.margeo.2021.106688.CrossRefGoogle Scholar
Brahim, Y.A., Wassenburg, J.A., Cruz, F.W., Sifeddine, A., Scholz, D., Bouchaou, L., Dassié, E.P., Jochum, K.P., Edwards, R.L., Cheng, H., 2018. Multi-decadal to centennial hydro-climate variability and linkage to solar forcing in the Western Mediterranean during the last 1000 years. Scientific Reports 8, 17446. https://doi.org/10.1038/s41598-018-35498-x.CrossRefGoogle Scholar
Brázdil, R., Kiss, A., Luterbacher, J., Nash, D.J., Řezníčková, L., 2018. Documentary data and the study of the past droughts: an overview of the state of the art worldwide. Climate of the Past 14, 19151960.CrossRefGoogle Scholar
Büntgen, U., Myglan, V.S., Ljungqvist, F.C., McCormick, M., Di Cosmo, N., Sigl, M., Jungclaus, J., et al., 2016. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience 9, 231236.CrossRefGoogle Scholar
Canpolat, E., 2015. Gölcük Volkanik Alanının Jeomorfolojisi, Isparta—Türkiye. Coğrafya Dergisi 31, 6282. [in Turkish]Google Scholar
Cengiz, O., Sener, E., Yagmurlu, F., 2006. A satellite image approach to the study of lineaments, circular structures and regional geology in the Golcuk Crater district and its environs (Isparta, SW Turkey). Journal of Asian Earth Sciences 27, 155163.CrossRefGoogle Scholar
Cohen, S.A., 2003. Paleolimnology: The History and Evolution of Lake Systems. Oxford University Press, Oxford, UK, and New York.CrossRefGoogle Scholar
Cook, B.I., Anchukaitis, K.J., Touchan, R., Meko, D.M., Cook, E.R., 2016. Spatiotemporal drought variability in the Mediterranean over the last 900 years. Journal of Geophysical Research 121, 20602074.CrossRefGoogle ScholarPubMed
Corella, J.P., Stefanova, V., El Anjoumi, A., Rico, E., Giralt, S., Moreno, A., Plata-Montero, A., Valero-Garcés, B.L., 2013. A 2500-year multi-proxy reconstruction of climate change and human activities in northern Spain: the Lake Arreo record. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 555568.CrossRefGoogle Scholar
Cronin, T.M., Hayo, K., Thunell, R.C., Dwyer, G.S., Saenger, C., Willard, D.A., 2010. The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 299310.CrossRefGoogle Scholar
Croudace, I.W., Löwemark, L., Tjallingii, R., Zolitschka, B., 2019. Current perspectives on the capabilities of high resolution XRF core scanners. Quaternary International 514, 515.CrossRefGoogle Scholar
Croudace, I.W., Rindby, A., Rothwell, R.G., 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications 267, 5163.CrossRefGoogle Scholar
Cullen, H.M., deMenocal, P.B., 2000. North Atlantic influence on Tigris-Euphrates streamflow. International Journal of Climatology 20, 853863. https://doi.org/10.1002/1097-0088(20000630)20:8<853::AID-JOC497>3.0.CO;2-M.3.0.CO;2-M>CrossRefGoogle Scholar
Danladi, I.B., Akçer-Ön, S., 2018. Solar forcing and climate variability during the past millennium as recorded in a high altitude lake: Lake Salda (SW Anatolia). Quaternary International, 486, 185198.CrossRefGoogle Scholar
Danladi, I.B., Akçer-Ön, S., Ön, Z.B., Schmidt, S., 2021. High-resolution temperature and precipitation variability of southwest Anatolia since 1730 CE from Lake Gölcük sedimentary records. Turkish Journal of Earth Sciences 30. https://doi.org/10.3906/yer-2008-14.CrossRefGoogle Scholar
Davies, S.J., Lamb, H.F., Roberts, S.J., 2015. Micro-XRF core scanning in palaeolimnology: recent developments. In: Croudace, I., Rothwell, R. (Eds.), Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research, Vol 17. Springer, Dordrecht, pp. 189226.CrossRefGoogle Scholar
Delaygue, G., Bard, E., 2011. An Antarctic view of Beryllium-10 and solar activity for the past millennium. Climate Dynamics 36, 22012218.CrossRefGoogle Scholar
Deniz, A., Toros, H., Incecik, S., 2011. Spatial variations of climate indices in Turkey. International Journal of Climatology 31, 394403.CrossRefGoogle Scholar
DSİ (Devlet Su İşleri Genel Müdürlüğü) [General Directorate of State Hydraulic Works], 1978. Gölcük Gölü Batimetri Haritası [Bathymetry Map of Gölcük Lake]. DSİ, Ankara, Turkey. [in Turkish].Google Scholar
Eddy, J.A., 1976. The Maunder Minimum: the reign of Louis XIV appears to have been a time of real anomaly in the behavior of the sun. Science 192, 11891202.CrossRefGoogle Scholar
England, A., Eastwood, W.J., Roberts, C.N., Turner, R., Haldon, J.F., 2008. Historical landscape change in Cappadocia (central Turkey): a palaeoecological investigation of annually laminated sediments from Nar Lake. The Holocene 18, 12291245.CrossRefGoogle Scholar
Engstrom, D.R., Wright, H.E., 1984. Chemical stratigraphy of lake sediments as a record of environmental change. In: Haworth, E.Y., Lund, J.W.G. (Eds.), Lake Sediments and Environmental History: Studies in Palaeolimnology and Palaeoecology in Honour of Winifred Tutin. Leicester University Press, Leicester, UK.Google Scholar
Enzel, Y., Bookman, R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., Stein, M., 2003. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60, 263273.CrossRefGoogle Scholar
Erginal, A.E., ÇaĞatay, M.N., Selim, H.H., KarabiyiKoğlu, M., Çakir, Ç., Yakupoğlu, N., Acar, D., Akbaş, A., Kaya, H., 2019. Multi-proxy sedimentary records of dry-wet climate cycles during the last 2 ka from Lake Çildir, east Anatolian Plateau, Turkey. Geografia Fisica e Dinamica Quaternaria 42, 6170.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. John Wiley and Sons, Chichester, UK.Google Scholar
Filzmoser, P., Hron, K., 2008. Outlier detection for compositional data using robust methods. Mathematical Geosciences 40, 233248.CrossRefGoogle Scholar
Filzmoser, P., Hron, K., Reimann, C., Garrett, R., 2009. Robust factor analysis for compositional data. Computers & Geosciences 35, 18541861.CrossRefGoogle Scholar
Filzmoser, P., Hron, K., Templ, M., 2018. Applied Compositional Data Analysis: With Worked Examples in R. Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-319-96422-5.CrossRefGoogle Scholar
Frisia, S., Borsato, A., Spötl, C., Villa, I., Cucchi, F., 2005. Climate variability in the SE Alps of Italy over the past 17 000 years reconstructed from a stalagmite record. Boreas 34, 445455.CrossRefGoogle Scholar
Göktürk, O.M., Fleitmann, D., Badertscher, S., Cheng, H., Edwards, R.L., Leuenberger, M., Fankhauser, A., Tüysüz, O., Kramers, J., 2011. Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quaternary Science Reviews 30, 24332445.CrossRefGoogle Scholar
Goosse, H., Arzel, O., Luterbacher, J., Mann, M.E., Renssen, H., Riedwyl, N., Timmermann, A., Xoplaki, E., Wanner, H., 2006. The origin of the European “Medieval Warm Period.” Climate of the Past 2, 99113.CrossRefGoogle Scholar
Grauel, A.L., Goudeau, M.L.S., de Lange, G.J., Bernasconi, S.M., 2013. Climate of the past 2500 years in the Gulf of Taranto, central Mediterranean Sea: a high-resolution climate reconstruction based on δ18O and δ13C of Globigerinoides ruber (White). The Holocene 23, 14401446.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Haldon, J., 2016. Cooling and societal change. Nature Geoscience 9, 191192.CrossRefGoogle Scholar
Han, D., Gao, C., Yu, Z., Yu, X., Li, Y., Cong, J., Wang, G., 2019. Late Holocene vegetation and climate changes in the Great Hinggan Mountains, northeast China. Quaternary International 532, 138145.CrossRefGoogle Scholar
Heinrich, I., Touchan, R., Dorado Liñán, I., Vos, H., Helle, G., 2013. Winter-to-spring temperature dynamics in Turkey derived from tree rings since AD 1125. Climate Dynamics 41, 16851701.CrossRefGoogle Scholar
Helama, S., Jones, P.D., Briffa, K.R., 2017. Dark Ages Cold Period: a literature review and directions for future research. The Holocene 27, 16001606.CrossRefGoogle Scholar
Hernández, A., Sánchez-López, G., Pla-Rabes, S., Comas-Bru, L., Parnell, A., Cahill, N., Geyer, A., Trigo, R.M., Giralt, S., 2020. A 2,000-year Bayesian NAO reconstruction from the Iberian Peninsula. Scientific Reports 10, 14961. https://doi.org/10.1038/s41598-020-71372-5.CrossRefGoogle ScholarPubMed
Jacobson, M.J., Flohr, P., Gascoigne, A., Leng, M.J., Sadekov, A., Cheng, H., Edwards, R.L., Tüysüz, O., Fleitmann, D., 2021. Heterogenous Late Holocene climate in the eastern Mediterranean—the Kocain Cave record from SW Turkey. Geophysical Research Letters 48, e2021GL094733. https://doi.org/10.1029/2021GL094733.CrossRefGoogle Scholar
Jiang, Y., Xu, Z., 1986. On the Spörer Minimum. Astrophysics and Space Science 118, 159162.CrossRefGoogle Scholar
Jones, M.D., Roberts, C.N., Leng, M.J., Türkeş, M., 2006. A high-resolution late Holocene lake isotope record from Turkey and links to North Atlantic and monsoon climate. Geology 34, 361364.CrossRefGoogle Scholar
Kahya, E., 2011. The Impacts of NAO on the Hydrology of the Eastern Mediterranean. In: Vicente-Serrano, S., Trigo, R. (Eds.), Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region. Advances in Global Change Research, Vol 46. Springer, Dordrecht, pp. 5771.Google Scholar
Kaniewski, D., Van Campo, E., Paulissen, E., Weiss, H., Bakker, J., Rossignol, I., Van Lerberghe, K., 2011. The Medieval Climate Anomaly and the Little Ice Age in coastal Syria inferred from pollen-derived palaeoclimatic patterns. Global and Planetary Change 78, 178187.CrossRefGoogle Scholar
Kılıç, N.K., Caner, H., Erginal, A.E., Ersin, S., Selim, H.H., Kaya, H., 2018. Environmental changes based on multi-proxy analysis of core sediments in Lake Aktaş Turkey: preliminary results. Quaternary International 486, 8997.CrossRefGoogle Scholar
Köse, E., 2018. İçel'de Bir Celâlî: Muslu Çavuş İsyani (1606–1610). Tarih Dergisi 67, 2358.Google Scholar
Köse, N., Tuncay Güner, H., Harley, G.L., Guiot, J., 2017. Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data. Climate of the Past 13, 115.CrossRefGoogle Scholar
Koutsodendris, A., Brauer, A., Reed, J.M., Plessen, B., Friedrich, O., Hennrich, B., Zacharias, I., Pross, J., 2017. Climate variability in SE Europe since 1450 AD based on a varved sediment record from Etoliko Lagoon (western Greece). Quaternary Science Reviews 159, 6376.CrossRefGoogle Scholar
Kuhlmann, H., Meggers, H., Freudenthal, T., Wefer, G., 2004. The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophysical Research Letters 31. https://doi.org/10.1029/2004GL021267CrossRefGoogle Scholar
Kushnir, Y., Stein, M., 2010. North Atlantic influence on 19th–20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations. Quaternary Science Reviews 29, 38433860.CrossRefGoogle Scholar
Kushnir, Y., Stein, M., 2019. Medieval climate in the Eastern Mediterranean: instability and evidence of solar forcing. Atmosphere 10, 29. https://doi.org/10.3390/atmos10010029.CrossRefGoogle Scholar
Kutiel, H., Maheras, P., Türkeş, M., Paz, S., 2002. North Sea–Caspian pattern (NCP)—an upper level atmospheric teleconnection affecting the eastern Mediterranean—implications on the regional climate. Theoretical and Applied Climatology 72, 173192.CrossRefGoogle Scholar
Kuzucuoǧlu, C., Dörfler, W., Kunesch, S., Goupille, F., 2011. Mid- to Late-Holocene climate change in central Turkey: the Tecer Lake record. The Holocene 21, 173188.CrossRefGoogle Scholar
Li, H.C., Ku, T.L., 1997. δ13C–δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 133, 6980.CrossRefGoogle Scholar
Lüning, S., Gałka, M., Danladi, I.B., Adagunodo, T.A., Vahrenholt, F., 2018. Hydroclimate in Africa during the Medieval Climate Anomaly. Palaeogeography, Palaeoclimatology, Palaeoecology 495, 309322.CrossRefGoogle Scholar
Lüning, S., Schulte, L., Garcés-Pastor, S., Danladi, I. B., Gałka, M., 2019. The Medieval Climate Anomaly in the Mediterranean region. Paleoceanography and Paleoclimatology 34, 16251649.CrossRefGoogle Scholar
Luterbacher, J., García-Herrera, R., Akcer-On, S., Allan, R., Alvarez-Castro, M. C., Benito, G., Booth, J., et al., 2012. A review of 2000 years of paleoclimatic evidence in the Mediterranean. In: Lionello, P. (Ed.), The Climate of the Mediterranean Region: From the Past to the Future. Elsevier, Amsterdam, pp. 87185.CrossRefGoogle Scholar
Mann, M.E., 2013. The Last Millennium. In: Elias, S.A. (Ed.), Encyclopedia of Quaternary Science: Second Edition. Elsevier, Amsterdam.Google Scholar
Mann, M.E., 2002. Medieval Climatic Optimum. In: MacCracken, M.C., Perry, J.S. (Eds.), Encyclopedia of Global Environmental Change: Volume 1, The Earth System: Physical and Chemical Dimensions of Global Environmental Change. John Wiley & Sons, Chichester, UK, pp. 514516.Google Scholar
Mann, M.E., Zhihua, Z., Scott, R., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.CrossRefGoogle ScholarPubMed
Martin-Puertas, C., Tjallingii, R., Bloemsma, M., Brauer, A., 2017. Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data. Journal of Quaternary Science 32, 427436.CrossRefGoogle Scholar
Maxbauer, D.P., Shapley, M.D., Geiss, C.E., Ito, E., 2019. Holocene climate recorded by magnetic properties of lake sediments in the Northern Rocky Mountains, USA. The Holocene 30, 479484.CrossRefGoogle Scholar
Moreno, J., Fatela, F., Leorri, E., Gonçalves, M.A., Gómez-Navarro, J.J., Araújo, M.F., Freitas, M.C., Trigo, R.M., Blake, W.H., Moreno, F., 2019. Foraminiferal evidence of major environmental changes driven by the sun-climate coupling in the western Portuguese coast (14th century to present). Estuarine, Coastal and Shelf Science 218, 106118.CrossRefGoogle Scholar
Musk, L.F., 1980. Book reviews: “Oliver, J. E. 1978: Climate and Man's Environment. An Introduction to Applied Climatology. Chichester: John Wiley. vii + 517 pp.” Progress in Physical Geography: Earth and Environment 4, 299301.CrossRefGoogle Scholar
Ocakoğlu, F., Dönmez, E.O., Akbulut, A., Tunoğlu, C., Kır, O., Açıkalın, S., Erayık, C., Yılmaz, İ.Ö., Leroy, S.A.G., 2016. A 2800-year multi-proxy sedimentary record of climate change from Lake Çubuk (Göynük, Bolu, NW Anatolia). The Holocene 26, 205221.CrossRefGoogle Scholar
Platevoet, B., Scaillet, S., Guillou, H., Blamart, D., Nomade, S., Massault, M., Poisson, A., et al., 2008. Pleistocene eruptive chronology of the Gölcük Volcano, Isparta Angle, Turkey. Quaternaire 19, 147156.CrossRefGoogle Scholar
Pyrina, M., Moreno-Chamarro, E., Wagner, S., Zorita, E., 2019. Spatial signature of solar forcing over the North Atlantic summer climate in the past millennium. Earth System Dynamics, Discussions [Preprint: “this preprint was under review for the journal ESD but the revision was not accepted”]. https://doi.org/10.5194/esd-2019-50.Google Scholar
R Core Team, 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.Google Scholar
Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008. Statistical Data Analysis Explained. Applied Environmental Statistics with R. John Wiley and Sons, Chichester, UK.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Roberts, N., Jones, M.D., Benkaddour, A., Eastwood, W.J., Filippi, M.L., Frogley, M.R., Lamb, H.F., et al., 2008. Stable isotope records of late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quaternary Science Reviews 27, 24262441.CrossRefGoogle Scholar
Roberts, N., Moreno, A., Valero-Garcés, B.L., Corella, J.P., Jones, M., Allcock, S., Woodbridge, J., et al., 2012. Palaeolimnological evidence for an east–west climate see-saw in the Mediterranean since AD 900. Global and Planetary Change 84–85, 2334.CrossRefGoogle Scholar
Sachs, J.P., Sachse, D., Smittenberg, R.H., Zhang, Z., Battisti, D.S., Golubic, S., 2009. Southward movement of the Pacific Intertropical Convergence Zone AD 1400–1850. Nature Geoscience 2, 519525.CrossRefGoogle Scholar
Schilman, B., Ayalon, A., Bar-Matthews, M., Kagan, E.J., Almogi-Labin, A., 2002. Sea-land paleoclimate correlation in the Eastern Mediterranean region during the Late Holocene. Israel Journal of Earth Sciences 51, 181190.CrossRefGoogle Scholar
Schmitt, A.K., Danišík, M., Siebel, W., Elitok, Ö., Chang, Y.W., Shen, C.C., 2014. Late Pleistocene zircon ages for intracaldera domes at Gölcük (Isparta, Turkey). Journal of Volcanology and Geothermal Research 286, 2429.CrossRefGoogle Scholar
Seguin, J., Bintliff, J.L., Grootes, P.M., Bauersachs, T., Dörfler, W., Heymann, C., Manning, S.W., et al., 2019. 2500 years of anthropogenic and climatic landscape transformation in the Stymphalia polje, Greece. Quaternary Science Reviews 213, 133154.CrossRefGoogle Scholar
Şenkul, Ç., Memiş, T., Eastwood, W.J., Doğan, U., 2018. Mid-to Late-Holocene paleovegetation change in vicinity of Lake Tuzla (Kayseri), Central Anatolia, Turkey. Quaternary International 486, 98106.CrossRefGoogle Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Swingedouw, D., Terray, L., Cassou, C., Voldoire, A., Salas-Mélia, D., Servonnat, J., 2011. Natural forcing of climate during the last millennium: fingerprint of solar variability. Climate Dynamics 36, 13491364.CrossRefGoogle Scholar
Thiéblemont, R., Matthes, K., Omrani, N.E., Kodera, K., Hansen, F., 2015. Solar forcing synchronizes decadal North Atlantic climate variability. Nature Communications 6, 8268. https://doi.org/10.1038/ncomms9268.CrossRefGoogle ScholarPubMed
Thompson, R., Battarbee, R.W., O'Sullivan, P.E., Oldfield, F., 1976. Magnetic susceptibility of lake sediments. Limnology and Oceanography 20, 687698.CrossRefGoogle Scholar
Touchan, R., Akkemik, Ü., Hughes, M.K., Erkan, N., 2007. May–June precipitation reconstruction of southwestern Anatolia, Turkey during the last 900 years from tree rings. Quaternary Research 68, 196202.CrossRefGoogle Scholar
Touchan, R., Xoplaki, E., Funkhouser, G., Luterbacher, J., Hughes, M.K., Erkan, N., Akkemik, Ü., Stephan, J., 2005. Reconstructions of spring/summer precipitation for the Eastern Mediterranean from tree-ring widths and its connection to large-scale atmospheric circulation. Climate Dynamics 25, 7598.CrossRefGoogle Scholar
Tudryn, A., Tucholka, P., Özgûr, N., Gibert, E., Elitok, O., Kamaci, Z., Massault, M., Poisson, A., Platevoet, B., 2013. A 2300-year record of environmental change from SW Anatolia, Lake Burdur, Turkey. Journal of Paleolimnology 49, 647662.CrossRefGoogle Scholar
Turner, G.M., 1997. Environmental magnetism and magnetic correlation of high resolution lake sediment records from Northern Hawke's Bay, New Zealand. New Zealand Journal of Geology and Geophysics 40, 287298.CrossRefGoogle Scholar
Viana, J.C.C., Sifeddine, A., Turcq, B., Albuquerque, A.L.S., Moreira, L.S., Gomes, D.F., Cordeiro, R.C., 2014. A late Holocene paleoclimate reconstruction from Boqueirão Lake sediments, northeastern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 415, 117126.CrossRefGoogle Scholar
Wagner, S., Zorita, E., 2005. The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton Minimum (1790–1830): a model study. Climate Dynamics 25, 205218.CrossRefGoogle Scholar
Weber, M.E., Niessen, F., Kuhn, G., Wiedicke, M., 1996. Calibration and application of marine sedimentary physical properties using a multi-sensor core logger. Marine Geology 136, 151172.CrossRefGoogle Scholar
Weltje, G., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: theory and application. Earth and Planetary Science Letters 274, 423438.CrossRefGoogle Scholar
White, S., 2012. The Celali Rebellion. In: White, S., The Climate of Rebellion in the Early Modern Ottoman Empire. Cambridge University Press, Cambridge, UK, pp. 163186.Google Scholar
White, S., 2013. The Little Ice Age crisis of the Ottoman Empire: a conjuncture in Middle East environmental history. In: Mikhail, A. (Ed.), Water on Sand: Environmental Histories of the Middle East and North Africa. Oxford University Press, Oxford, UK and New York, pp. 7190.Google Scholar
Wick, L., Lemcke, G., Sturm, M., 2003. Evidence of Late glacial and Holocene climatic change and human impact in eastern Anatolia: high-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene 13, 665675.CrossRefGoogle Scholar
Woodbridge, J., Roberts, N., 2011. Late Holocene climate of the Eastern Mediterranean inferred from diatom analysis of annually-laminated lake sediments. Quaternary Science Reviews 30, 33813392.CrossRefGoogle Scholar
Xoplaki, E., Fleitmann, D., Luterbacher, J., Wagner, S., Haldon, J. F., Zorita, E., Telelis, I., Toreti, A., Izdebski, A., 2016. The Medieval Climate Anomaly and Byzantium: a review of the evidence on climatic fluctuations, economic performance, and societal change. Quaternary Science Reviews 136, 229252.CrossRefGoogle Scholar
Yukimoto, S., Kodera, K., Thiéblemont, R., 2017. Delayed North Atlantic response to solar forcing of the stratospheric polar vortex. Scientific Online Letters on the Atmosphere (SOLA) 13, 5358.Google Scholar
Żarczyński, M., Wacnik, A., Tylmann, W., 2019. Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland). Science of the Total Environment 657, 585596.CrossRefGoogle ScholarPubMed
Zeist, W. van, Woldring, H., Stapert, D., 1975. Late Quaternary vegetation and climate of southwestern Turkey. Palaeohistoria 17, 53143. https://ugp.rug.nl/Palaeohistoria/article/view/24805.Google Scholar