Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T04:59:38.468Z Has data issue: false hasContentIssue false

The impact of Dansgaard–Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian

Published online by Cambridge University Press:  20 January 2017

Olivier Moine*
Affiliation:
Laboratoire de Géographie Physique, UMR CNRS 8591, 1 place Aristide Briand, 92195 Meudon Cedex, France
Denis-Didier Rousseau
Affiliation:
Laboratoire de Météorologie Dynamique and CERES-ERTI, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 5, France Lamont–Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
Pierre Antoine
Affiliation:
Laboratoire de Géographie Physique, UMR CNRS 8591, 1 place Aristide Briand, 92195 Meudon Cedex, France
*
*Corresponding author. Fax: +33 1 45 07 58 30. E-mail address:olivier.moine@cnrs-bellevue.fr (O. Moine).

Abstract

A loess sequence has been sampled continuously at high resolution in Nussloch (Rhine Valley, Germany) for malacological and grain-size analyses between ca. 34 and 20 ka. Molluscan abundance and richness, percentage in hygrophilous species and grain-size index show cyclical variations related to the lithological loess–gley alternation. Major molluscan abundance maxima were triggered by temperature increases through an enhancement of the reproduction cycle, whereas cyclical richness fluctuations and percentage in hygrophilous species reflect variations in local humidity and changes in the environmental mosaic. Malacological parameters allow the distinction of four environmental phases organised in cyclical successions correlated with most of the loess–gley doublets. The correlation of the grain-size index of the Nussloch loess sequence with the dust content of the GRIP ice core demonstrates the synchronicity of major molluscan abundance maxima and δ18O increases characterising temperature increases during Dansgaard–Oeschger interstades. A schematic model is proposed to link the North Atlantic Dansgaard–Oeschger climatic oscillations with local environmental changes indicated by both malacofauna and pedostratigraphy. This malacological study of the Nussloch loess sequence thus provides new information about the response of terrestrial loessic palaeoenvironments to millennial-timescale climatic fluctuations during the Upper Weichselian (∼ marine isotope stage 2 (MIS 2) and end of MIS 3).

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, W., (1960). Mollusques. I Mollusques terrestres et dulcicoles.. Bruxelles, 402 pp.Google Scholar
Antoine, P., Rousseau, D.-D., Lautridou, J.-P., Hatté, C., (1999). Last interglacial-glacial climatic cycle in loess–paleosol successions of north-western France.. Boreas 28, 551563.Google Scholar
Antoine, P., Rousseau, D.-D., Zöller, L., Lang, A., Munaut, A.-V., Hatté, C., Fontugne, M., (2001). High-resolution record of the last Interglacial–glacial cycle in the Nussloch loess–paleosol sequences, Upper Rhine Area, Germany.. Quaternary International 76/77, 211229.Google Scholar
Antoine, P., Rousseau, D.-D., Hatté, C., Zöller, L., Lang, A., Fontugne, M., Moine, O., (2002). Evénements éoliens rapides en contexte loessique: l'exemple de la séquence du pléniglaciaire supérieur weichsélien de Nussloch (vallée du Rhin-Allemagne).. Quaternaire 13, 199208.CrossRefGoogle Scholar
Antoine, P., Catt, J., Lautridou, J.-P., Sommé, J., (2003). The loess and coversands of northern France and southern England.. Journal of Quaternary Science 18, 309318.Google Scholar
Aupinel, P., Daguzan, J., (1989). Etude du rôle de la photopériode sur l'activité métabolique de jeunes escargots Petit-gris (Helix aspersa Müller) et mise en évidence d'une phase photosensible.. Haliotis 19, 4755.Google Scholar
Baur, B., (1984). Shell size and growth rate differences for alpine populations of Arianta arbustorum (L.) (Pulmonata: Helicidae).. Revue suisse de Zoologie 91, 3746.Google Scholar
Beaulieu (de), J.-L., Reille, M., (1984). A long Upper Pleistocene pollen record from Les Echets, near Lyon, France.. Boreas 1, (3) 111131.Google Scholar
Bengtsson, J., Baur, B., (1993). Do pioneers have r-selected traits ? Life history patterns among colonizing terrestrial gastropods.. Oecologia 94, 1722.CrossRefGoogle ScholarPubMed
Bourillet, J.-F., Reynaud, J.-Y., Baltzer, A., Zaragosi, S., (2003). The 'Fleuve Manche': the submarine sedimentary features from the outer shelf to the deep-sea fans.. Journal of Quaternary Science 18, 261282.Google Scholar
Broecker, W., (1994). Massive iceberg discharges as triggers for global climate change.. Nature 372, 421424.Google Scholar
Carter, S.P., (1990). The stratification and taphonomy of shells in calcareous soils: implications for land snail analysis in archaeology.. Journal of Archaeological Science 17, 495507.Google Scholar
Chevallier, H., (1982). Facteurs de croissance chez des gastéropodes pulmonés terrestres paléarctiques en élevage.. Haliotis 12, 2946.Google Scholar
COHMAP Members (1988). Climatic changes of the last 18,000 years: observations and model simulations.. Science 241, 10431052.Google Scholar
Cook, A., (2001). Behavioural ecology: on doing the right thing, in the right place at the right time.. Barker, G.M. The biology of terrestrial molluscs CABI, Hamilton.447487.Google Scholar
Coope, G.R., (2000). Middle Devensian (Weicheselian) coleopteran assemblages from Earth, Cambridgeshire (UK) and their bearing on the interpretation of 'Full glacial' floras and faunas.. Journal of Quaternary Science 15, 779788.Google Scholar
Daguzan, J., Le Guen, C., (1987). Ecophysiologie de la croissance de l'escargot Petit-gris (Helix aspersa Müller), après une hibernation artificielle et en conditions contrôlées.. Haliotis 16, 111.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record.. Nature 364, 218220.Google Scholar
De Angelis, M., Steffensen, J.P., Legrand, M., Clausen, H., Hammer, C., (1997). Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: comparison with east Antarctic records.. Journal of Geophysical Research 102, 2668126698.CrossRefGoogle Scholar
Falkner, G., Obrdlik, P., Castella, E., Speight, M.C.D., (2001). Shelled Gastropoda of Western Europe.. Verlag der Friedrich-Held-Gesellschaft. Munchen. (265 pp).Google Scholar
Fink, J., (1969). La stratigraphie des loess d'Europe.. Bulletin de l'Association Française pour l'Etude du Quaternaire Supplementary Issue, (176 pp).Google Scholar
Follieri, M., Giardini, M., Magri, D., Sadori, L., (1998). Palynostratigraphy of the last glacial period in the volcanic region of Central Italy.. Quaternary International 47/48, 320.Google Scholar
Ford, D.J.G., Cook, A., (1994). The modulation of rhythmic behavior in the pulmonate slug Limax pseudoflavus by season and photoperiod.. Journal of Zoology 232, 419434.Google Scholar
Frechen, M., (1999). Upper Pleistocene loess stratigraphy in Southern Germany.. Quaternary Geochronology 18, 243269.Google Scholar
Frechen, M., Horvath, E., Gabris, G., (1997). Geochronology of Middle and Upper Pleistocene loess sections in Hungary.. Quaternary Research 48, 291312.Google Scholar
Frechen, M., Zander, A., Cilek, V., Ložek, V., (1999). Loess chronology of the Last Interglacial/Glacial cycle in Bohemia and Moravia, Czech Republic.. Quaternary Science Reviews 18, 14671493.Google Scholar
Frechen, M., Van Vliet-Lanoe, B., van den Haute, P., (2001). The Upper Pleistocene loess record at Harmignies/Belgium — high resolution terrestrial archive of climate forcing.. Palaeogeography, Palaeoclimatology, Palaeoecology 173, 175195.Google Scholar
Ganopolski, A., Rahmstorf, S., (2001). Rapid changes of glacial climate simulated in a coupled climate model.. Nature 409, 153158.Google Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., (2003). Precise dating of Dansgaard–Oeschger climate oscillations in western Europe from stalagmite data.. Nature 421, 833837.Google Scholar
Germain, L., (1930). Mollusques terrestres et fluviatiles Librairie de la Faculté des Sciences, Paris.. 477 pp.Google Scholar
Gomot, P., Gomot, A., Deray, A., (1987). La croissance de l'escargot Helix pomatia élevé en conditions hors sol contrôlées. Influence des paramètres d'environnement.. Haliotis 16, 1320.Google Scholar
Grahmann, R., (1932). Der Löb in Europa.. Mitteilungen der Gesellschaft fur Erdkunde zu Leipzig 51, 524.Google Scholar
Haesaerts, P., (1980). Stratigraphie des dépôts limoneux du Pléistocène supérieur de Moyenne Belgique: essai de zonation paléoclimatique.. Bulletin de l'Association Française pour l'Etude du Quaternaire 165173. N.S.Google Scholar
Haesaerts, P., (1985). Les loess du Pléistocène supérieur en Belgique; comparaisons avec les séquences d'Europe centrale.. Bulletin de l'Association Française pour l'Etude du Quaternaire 2–3, 105115.Google Scholar
Haesaerts, P., Juvigné, E., Kuyl, O., Mücher, H., Roebroeks, W., (1981). Compte rendu de l'excursion du 13 juin 1981, en Hesbaye et au Limbourg Néerlandais, consacrée à la chronostratigraphie des loess du Pléistocène supérieur.. Annales de la Société Géologique de Belgique 104, 223240.Google Scholar
Hatté, C., Guiot, J., (2005). Palaeoprecipitation reconstruction by inverse modelling using the isotopic signal of loess organic matter: application to the Nuβloch loess sequence (Rhine Valley, Germany).. Climate Dynamics 25, 315327.Google Scholar
Hatté, C., Antoine, P., Fontugne, M., Rousseau, D.-D., Tisnérat-Laborde, N., Zöller, L., (1999). New chronology and organic matter δ13C paleoclimatic significance of Nussloch loess sequence (Rhine Valley, Germany).. Quaternary International 62, 8591.Google Scholar
Hatté, C., Antoine, P., Fontugne, M., Lang, A., Rousseau, D.-D., Zöller, L., (2001a). δ13C of loess organic matter as a potential proxy for paleoprecipitation.. Quaternary Research 55, 3338.Google Scholar
Hatté, C., Pessenda, L.-C., Lang, A., Paterne, M., (2001b). Development of accurate and reliable 14C chronologies for loess deposits: application to the loess sequence of Nussloch (Rhine valley, Germany).. Radiocarbon 43, 611618.Google Scholar
Heinrich, H., (1988). Origin and consequences of cyclic ice rafting in the Northeast Atlantic ocean during the past 130,000 years.. Quaternary Research 29, 142152.Google Scholar
Heller, J., (2001). Life history strategies.. Barker, G.M. The biology of terrestrial molluscs CABI, Hamilton.413445.Google Scholar
Huijzer, B.S., Vandenberghe, J., (1998). Climatic reconstruction of the Weichselian Pleniglacial in northwestern and central Europe.. Journal of Quaternary Science 13, 391417.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U., Andersen, U., Andersen, K.K., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Shoji, H., Sveinbjörnsdottir, A.E., White, J., Jouzel, J., Fisher, D., (1997). The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability.. Journal of Geophysical Research 102, 2639726410.Google Scholar
Kerney, M.P., Cameron, R.A.D., Jungbluth, J.H., Parey, P., (1983). Die Landschnecken Nord-und Mitteleuropas.. Hamburg und Berlin, 384 pp.Google Scholar
Knutz, P.C., Austin, W.E.N., Jones, E.J.W., (2001). Millennial-scale depositional cycles related to British Ice Sheet variability and North Atlantic paleocirculation since 45 kyr BP, Barra Fan, U.K. margin.. Palaeoceanography 16, 5364.Google Scholar
Lambeck, K., Yokoyama, Y., Purcell, T., (2002). Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stages 3 and 2.. Quaternary Science Reviews 21, 343360.Google Scholar
Lambert, M.-C., Daguzan, J., (1987). Effet de la température et de la photopériode sur la croissance de Lymnaea peregra (Müller) (Mollusque Gastéropode Pulmoné Basommatophore).. Haliotis 16, 3140.Google Scholar
Lang, A., Hatté, C., Rousseau, D.-D., Antoine, P., Fontugne, M., Zöller, L., Hambach, U., (2003). High resolutions chronologies for loess: comparing AMS-14C and optical dating results.. Quaternary Science Reviews 22, 953959.Google Scholar
Langley, C.K., (1979). Thermal acclimation of a central neurone of Helix aspersa. I. Effects of temperature on electrolyte levels in the haemolymph.. Journal of Experimental Biology 78, 181186.Google Scholar
Lautridou, J.-P., Sommé, J., (1974). Les loess et les provinces climato-sédimentaires du Pléistocène supérieur dans le Nord-Ouest de la France. Essai de corrélation entre le Nord et la Normandie.. Bulletin de l'Association Française pour l'Etude du Quaternaire 3–4, 237241.Google Scholar
Léger, M., (1990). Loess landforms.. Quaternary International 7/8, 5361.Google Scholar
Likharev, I.M., Rammel'meier, E.S., (1962). Terrestrial mollusks of the fauna of the U.S.S.R.. Oldbourne press, Jerusalem. 574 pp.Google Scholar
Ložek, V., (1964). Quartärmollusken der Tschechoslowakei.. Rozpravy Ustredniho ustuvu geologického 31, 1374.Google Scholar
Ložek, V., (1990). Molluscs in loess, their paleoecological significance and role in geochronology — Principles and methods.. Quaternary International 7/8, 7179.Google Scholar
Madec, L., Daguzan, J., (1987). Etude de quelques facteurs affectant la reproduction de l'escargot Petit-gris Helix aspersa (Müller). (Mollusque Gastéropode Pulmoné Stylommatophore).. Haliotis 16, 7791.Google Scholar
Masson-Delmotte, V., Jouzel, J., Landais, A., Stievenard, M., Johnsen, S.J., White, J.W.C., Werner, M., Sveinbjörnsdottir, A.E., Fuhrer, K., (2005). GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin.. Science 309, 118121.Google Scholar
Moine, O., Rousseau, D.-D., Antoine, P., Hatté, C., (2002). Mise en évidence d'événements climatiques rapides par les faunes de mollusques terrestres des loess weichséliens de Nussloch (Allemagne).. Quaternaire 13, 209217.Google Scholar
Moine, O., Rousseau, D.-D., Antoine, P., (2005). Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors.. Boreas 34, 363380.Google Scholar
Müller, U.C., Pross, J., Bibus, E., (2003). Vegetation response to rapid climate change in Central Europe during the past 140,000 yr based on evidence from the Füramoos pollen record.. Quaternary Research 59, 235245.Google Scholar
Paillard, D., Labeyrie, L., Yiou, P., (1996). Macintosh program performs time-series analysis.. EOS, Transactions, American Geophysical Union 77, 379.Google Scholar
Pelseneer, P., (1935). Essai d'Ethologie zoologique d'après l'étude des Mollusques.. Fondation A. de Potter, 662 pp.Google Scholar
Phifer, C.B., Prior, D.J., (1985). Body hydratation and haemolymph osmolality affect feeding and its neural correlate in the terrestrial gastropod, Limax maximus.. Journal of Experimental Biology 118, 405421.Google Scholar
Pons, A., Reille, M., (1988). The Holocene- and Upper Pleistocene pollen record from Padul (Granada, Spain): a new study.. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 243263.Google Scholar
Porter, S.C., An, Z. Correlation between climate events in the North Atlantic and China during the last glaciations Nature 375, 305308.Google Scholar
Potts, D.C., (1975). Persistence and extinction of local populations of the garden snail Helix aspersa in unfavorable environments.. Oecologia 21, 313334.Google Scholar
Puisségur, J.-J., (1976). Mollusques continentaux quaternaires de Bourgogne. Significations stratigraphiques et climatiques. Rapports avec d'autres faunes boréales de France.. Mémoires géologiques de l'Université de Dijon 3, 1241.Google Scholar
Rasmussen, T.L., van Weering, T.C.E., Labeyrie, L., (1997). Climatic instability, ice sheets dynamics at high northern latitudes during the last glacial period (58–10 ka BP).. Quaternary Science Reviews 16, 7180.Google Scholar
Reille, M., Beaulieu (de), J.-L., (1995). Long Pleistocene records from the Praclaux crater, south central France.. Quaternary Research 44, 205215.Google Scholar
Renssen, H., Bogaart, P.W., (2003). Atmospheric variability over the ~ 14.7 kyr BP stadial–interstadial transition in the North Atlantic region as simulated by an AGCM.. Climate Dynamics 20, 301313.Google Scholar
Riddle, W.A., (1983). Physiological Ecology of Land Snails and Slugs.. In: Russell-Hunter, W.D. (Eds.), The Mollusca. vol. 6, : Ecology, vol. 10, Academic Press edit, pp. 431461.Google Scholar
Rohling, E.J., Mayewski, P.A., Challenor, P., (2003). On the timing and mechanism of milenial-scale climate variability during the last glacial cycle.. Climate Dynamics 20, 257267.Google Scholar
Rousseau, D.-D., Puisségur, J.-J., Lautridou, J.-P., (1990). Biogeography of the Pleistocene pleniglacial malacofaunas in Europe. Stratigraphic and climatic implications.. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 723.Google Scholar
Rousseau, D.-D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J.-M., Moine, O., Labonne, M., Bentaleb, I., Jolly, D., (2002). Abrupt millenial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation.. Quaternary Science Reviews 21, 15771582.Google Scholar
Rousseau, D.-D., Sima, A., Antoine, P., Hatté, C., Lang, A., Zöller, L., (2007). Link between European and North Atlantic abrupt climate changes over the last glaciation.. Geophysical Research Letters 34, L22713 10.1029/2007GL031716.CrossRefGoogle Scholar
Sanchez Goñi, M.F., Cacho, I., Turon, J.-L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt, J.O., Shackelton, N.J., (2002). Synchroneity between marine and terrestrial responses to millenial scale climate variability during the last glacial period in the Mediterranean region.. Climate Dynamics 19, 95105.Google Scholar
Sanchez Goñi, M.F., Turon, J.-L., Eynaud, F., Gendreau, S., (2000). European climatic response to millenial-scale changes in the atmosphere-ocean system during the last glacial Period.. Quaternary Research 54, 394403.Google Scholar
Solem, A., (1984). A world model of land snail diversity and abundance.. In: Solem, A., Van Bruggen, A.C. (Eds.), World-Wide Snails. Biogeographical studies on non-marine Mollusca, Brill, E.J. and Backhuys, W., Leiden., pp. 623.CrossRefGoogle Scholar
Tzedakis, P., (1994). Vegetation change through glacial–interglacial cycles: a long pollen sequence perspective.. Philosophical Transactions of the Royal Society of London. B 345, 403432.Google Scholar
Tzedakis, P.C., Frogley, M.R., Lawson, I.T., Preece, R.C., Cacho, I., de Abreu, L., (2004). Ecological thresholds and patterns of millennial-scale climate variability: the response of vegetation in Greece during the last glacial period.. Geology 32, 109112.Google Scholar
Uminski, T., (1975). Life cycles in some Vitrinidae (Mollusca, Gastropoda) from Poland.. Annales Zoologici 33, 1733.Google Scholar
Van Huissteden, K., Pollard, D., (2003). Oxygen isotope stage 3 fluvial and eolian successions in Europe compared with climate model results.. Quaternary Research 59, 223233.Google Scholar
Van Vliet-Lanoë, B., (1985). Frost effects in soils.. Boardman, J. Soils and Quaternary Landscape Evolution John Wiley & Sons, 117158.Google Scholar
Vandenberghe, J., Roebroeks, W., van Kolfchoten, T., Mücher, H., Meijer, T., (1987). Sedimentary processes, periglacial activity and stratigraphy of the loess and fluvial deposits at Maastricht-Belvédère (The Netherlands).. Pécsi, M., French, H.M. Loess and Periglacial Phenomena Akademiai Kiado, Budapest.5162.Google Scholar
Vandenberghe, J., Van Huissteden, J.K., (1989). The Weichselian stratigraphy of the Twente region, eastern Netherlands.. Rose, J., Schlüchter, C. Quaternary Type Sections: Imagination or reality? Balkema, Rotterdam.9399.Google Scholar
Vandenberghe, J., An, Z., Nugteren, G., Huayu, L., Van Huissteden, K., (1997). New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis.. Geology 25, 3538.Google Scholar
Vandenberghe, J., Huijzer, B.S., Mücher, H., Laan, W., (1998). Short climatic oscillations in a western European loess sequence (Kesselt, Belgium).. Journal of Quaternary Science 13, 417485.Google Scholar
Voelker, A.H.L., (2002). Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database.. Quaternary Science Reviews 21, 11851212.Google Scholar
Watabe, N., (1983). Shell Repair. In: Russell-Hunter, W.D. (Eds.), The Mollusca. vol. 4, : Physiology, Vol. 7, Academic Press, pp. 289316.CrossRefGoogle Scholar
Wijmstra, T.A., (1969). Palynology of the first 30 metres of a 120 m deep section in northern Greece.. Acta Botanica Neerlandica 18, 511527.Google Scholar
Woillard, G., (1978). Grande Pile peat bog: a continuous record for the last 140,000 years.. Quaternary Research 9, 121.Google Scholar
Zilch, A., Jaeckel, S.G.A., (1962). Mollusken.. Quelle Meyer, Leipzig.293 pp.Google Scholar
Zöller, L., Stremme, H., Wagner, G.A., (1988). Thermolumineszenz-datierung an löss-paläoboden-sequenzen von nieder-, mittel- und oberrhein/Bundesrepublik Deutschland.. Chemical Geology 73, 3962.Google Scholar