Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T05:49:56.526Z Has data issue: false hasContentIssue false

The Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia

Published online by Cambridge University Press:  20 January 2017

J. Sakari Salonen*
Affiliation:
Department of Geosciences and Geography, PO Box 64, University of Helsinki, Helsinki 00014, Finland
Heikki Seppä
Affiliation:
Department of Geosciences and Geography, PO Box 64, University of Helsinki, Helsinki 00014, Finland
Minna Väliranta
Affiliation:
Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
Vivienne J. Jones
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, London, UK
Angela Self
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, London, UK
Maija Heikkilä
Affiliation:
Department of Geosciences and Geography, PO Box 64, University of Helsinki, Helsinki 00014, Finland Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada
Seija Kultti
Affiliation:
Department of Geosciences and Geography, PO Box 64, University of Helsinki, Helsinki 00014, Finland
Handong Yang
Affiliation:
Environmental Change Research Centre, Department of Geography, University College London, London, UK
*
Corresponding author. Fax: + 358 9 19150826.

Abstract

To investigate the Holocene climate and treeline dynamics in the European Russian Arctic, we analysed sediment pollen, conifer stomata, and plant macrofossils from Lake Kharinei, a tundra lake near the treeline in the Pechora area. We present quantitative summer temperature reconstructions from Lake Kharinei and Lake Tumbulovaty, a previously studied lake in the same region, using a pollen–climate transfer function based on a new calibration set from northern European Russia. Our records suggest that the early-Holocene summer temperatures from 11,500 cal yr BP onwards were already slightly higher than at present, followed by a stable Holocene Thermal Maximum (HTM) at 8000–3500 cal yr BP when summer temperatures in the tundra were ca. 3°C above present-day values. A Picea forest surrounded Lake Kharinei during the HTM, reaching 150 km north of the present taiga limit. The HTM ended with a temperature drop at 3500–2500 cal yr BP associated with permafrost initiation in the region. Mixed spruce forest began to disappear around Lake Kharinei at ca. 3500 cal yr BP, with the last tree macrofossils recorded at ca. 2500 cal yr BP, suggesting that the present wide tundra zone in the Pechora region formed during the last ca. 3500 yr.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, A.A., and Klimanov, V.A. Quantitative Holocene climatic reconstruction from Arctic Russia. Journal of Paleolimnology 24, (2000). 8191.Google Scholar
Andreev, A.A., Manley, W.F., Ingólfsson, Ó., and Forman, S.L. Environmental changes on Yukorgski Peninsula, Kara Sea, Russia, during the last 12, 800 radiocarbon years. Global and Planetary Change 31, (2001). 255264.CrossRefGoogle Scholar
Andreev, A.A., Siegert, C., Klimanov, V.A., Derevyagin, A.Y., Shilova, G.N., and Melles, M. Last Pleistocene and Holocene vegetation and climate on the Taymyr lowland, northern Siberia. Quaternary Research 57, (2002). 138150.CrossRefGoogle Scholar
Andreev, A.A., Tarasov, P.E., Ilyashuk, B.P., Ilyashuk, E.A., Cremer, H., Hermichen, W.-D., Wischer, F., and Hubberten, H.-W. Holocene environmental history recorded in Lake Lyadhej-To sediments, Polar Urals, Russia. Palaeogeography Palaeoclimatology Palaeoecology 223, (2005). 181203.Google Scholar
ACIA (Arctic Climate Impact Assessment) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. (2004). Cambridge University Press, Cambridge.Google Scholar
Appleby, P.G., and Oldfield, F. The calculation of 210Pb dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, (1978). 18.Google Scholar
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million of years. Quaternary Science Reviews 10, (1991). 297317.CrossRefGoogle Scholar
Betts, R.A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, (2000). 187190.CrossRefGoogle ScholarPubMed
Bigelow, N.H., Brubaker, L.B., Edwards, M.E., Harrison, S.P., Prentice, I.C., Anderson, P.M., Andreev, A.A., Bartlein, P.J., Christensen, T.R., Cramer, W., Kaplan, J.O., Lozhkin, A.V., Matveyeva, N.V., Murray, D.F., McGuire, A.D., Razzhivin, V.Y., Ritchie, J.C., Smith, B., Walker, D.A., Kremenetskii, K., Paus, A., Pisaric, M.F.J., and Volkova, V.S. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. Journal of Geophysical Research 108, (2003). 8170 CrossRefGoogle Scholar
Binney, H.A., Willis, K.J., Edwards, M.E., Bhagwat, S.A., Anderson, P.A., Andreev, A.A., Blaauw, M., Damblon, F., Haesaerts, P., Kienast, F., Kremenetski, K.V., Krivonogov, S.K., Lozhkin, A.V., MacDonald, G.M., Novenko, E.Y., Oksanen, P., Sapelko, T.V., Väliranta, M., and Vazhenina, L. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quaternary Science Reviews 28, (2009). 24452464.CrossRefGoogle Scholar
Birks, H.H., and Birks, H.J.B. Reconstructing Holocene Climates from Pollen and Plant Macrofossils. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F. Global Change in the Holocene. (2003). Arnold, London. 342357.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., and ter Braak, C.J.F. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London. Series B 327, (1990). 263278.Google Scholar
Birks, H.J.B. Late-Quaternary biotic changes in terrestrial and lacustrine environments, with particular reference to north-west Europe. Berglund, B.E. Handbook of Holocene Palaeoecology and Palaeohydrology. (1986). Wiley, Chichester. 366.Google Scholar
Birks, H.J.B. Numerical tools in quantitative palaeolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 301332.Google Scholar
Birks, H.J.B. Quantitative palaeoenvironmental reconstructions from Holocene biological data. Mackay, A., Battarbee, R., Birks, J., and Oldfield, F. Global Change in the Holocene. (2003). Arnold, London. 107123.Google Scholar
Birks, H.J.B., and Seppä, H. Pollen-based reconstructions of late-Quaternary climate in Europe—progress, problems and pitfalls. Acta Palaeobotanica 44, (2004). 317334.Google Scholar
Bonan, G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, (2008). 14441449.Google Scholar
Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: t he OxCal program. Radiocarbon 37, (1995). 425430.Google Scholar
Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, (2009). 337360.CrossRefGoogle Scholar
Chapin, F.S. III, Sturm, M., Serreze, M.C., McFadden, J.P., Key, J.R., Lloyd, A.H., McGuire, A.D., Rupp, T.S., Lynch, A.H., Schimel, J.P., Beringer, J., Chapman, W.L., Epstein, H.E., Euskirchen, E.S., Hinzman, L.D., Jia, G., Ping, C.-L., Tape, K.D., Thompson, C.D.C., Walker, D.A., and Welker, J.M. Role of land-surface changes in arctic summer warming. Science 310, (2005). 657660.Google Scholar
Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A., and Whetton, P. Regional Climate Projections. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M., and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge. 847940.Google Scholar
Cremer, H., Andreev, A., Hubberten, H.-W., and Wischer, F. Paleolimnological reconstructions of Holocene environments and climate from lake Lyadhej-To, Ural Mountains, Northern Russia. Arctic, Antarctic, and Alpine Research 36, (2004). 147155.CrossRefGoogle Scholar
Davis, M.B. Climatic instability, time lags, and community disequilibrium. Diamond, J.M., and Case, T.L. Community Ecology. (1986). Harper and Rowe, New York. 269284.Google Scholar
deMenocal, P., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., and Yarusinsky, M. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 19, (2000). 347361.CrossRefGoogle Scholar
Euskirchen, E.S., McGuire, A.D., Chapin, F.S. III, Yi, S., and Thompson, C.C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecological Applications 19, (2009). 10221043.CrossRefGoogle ScholarPubMed
Fægri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Wiley, Chichester.Google Scholar
Fischlin, A., Midgley, G.F., Price, J.T., Leemans, R., Gopal, B., Turley, C., Rounsevell, M.D.A., Dube, O.P., Tarazona, J., and Velichko, A.A. Ecosystems, their properties, goods, and services. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., and Hanson, C.E. Climate Change 2007: Impacts. Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge. 211272.Google Scholar
Foley, J.A., Kutzbach, J.E., Coe, M.T., and Levis, S. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371, (1994). 5254.Google Scholar
Foley, J.A., Heil Costa, M., Delire, C., Ramankutty, N., and Snyder, P. Green surprise? How terrestrial ecosystems could affect earth's climate. Frontiers in Ecology and the Environment 1, (2003). 3844.Google Scholar
Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science 280, (1998). 19161919.Google Scholar
Gorczyński, L. Sur le calcul du degré du continentalisme et son application dans la climatologie. Geografiska Annaler 2, (1920). 324331.Google Scholar
Gorczyński, L. The calculation of the degree of continentality. Monthly Weather Reviews 7, (1922). 370 2.0.CO;2>CrossRefGoogle Scholar
Heegaard, E., Birks, H.J.B., and Telford, R.J. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15, (2005). 612618.Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A.J. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, (2005). 19651978.Google Scholar
Hinzman, L.D., Bettez, N.D., Bolton, W.R. et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Climatic Change 72, (2005). 251298.Google Scholar
Huntley, B. The use of climate response surfaces to reconstruct palaeoclimate from Quaternary pollen and plant macrofossil data. Philosophical Transactions of the Royal Society, London B 341, (1993). 215224.Google Scholar
Jones, V.J., Leng, M.J., Solovieva, N., Sloane, H.J., and Tarasov, P. Holocene climate of the Kola Peninsula: evidence from the oxygen isotope record of diatom silica. Quaternary Science Reviews 23, (2004). 833839.Google Scholar
Jones, V.J., Solovieva, N., Self, A.E., McGowan, S., Rosén, P., Salonen, J.S., Seppä, H., Väliranta, M., Parrott, E., Brooks, S.J., in press. The influence of Holocene tree-line advance and retreat on an arctic lake ecosystem; a multi-proxy study from Kharinei Lake, North Eastern European Russia. Journal of Paleolimnology Google Scholar
Juggins, S., (2007). C2 Version 1.5 User guide. Software for ecological and palaeoecological data analysis and visualisation. Newcastle University, Newcastle upon Tyne.Google Scholar
Kaakinen, A., and Eronen, M. Holocene pollen stratigraphy indicating climatic and tree-line changes derived from a peat section at Ortino, in the Pechora lowland, northern Russia. The Holocene 10, (2000). 611620.Google Scholar
Kaplan, J.O., Bigelow, N.H., Prentice, I.C., Harrison, S.P., Bartlein, P.J., Christensen, T.R., Cramer, W., Matveyeva, N.V., McGuire, A.D., Murray, D.F., Razzhivin, V.Y., Smith, B., Walker, D.A., Anderson, P.M., Andreev, A.A., Brubaker, L.B., Edwards, M.E., and Lozhkin, A.V. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. Journal of Geophysical Research 108, (2003). 8171 CrossRefGoogle Scholar
Kaufman, D.S., Schneider, D.P., McKay, N.P., Ammann, C.M., Bradley, R.S., Briffa, K.R., Miller, G.H., Otto-Bliesner, P.L., Overpeck, J.T. Arctic Lakes 2k Project Members (Abbott, M., Axford, Y., Bird, B., Birks, H.J.B., Bjune, A.E., Briner, J., Cook, T., Chipman, M., Gajewski, K., Geirsdottir, A., Hu, F.S., Kutchko, B., Lamoureux, S., Loso, M., MacDonald, G.M., Peros, M., Porinchu, D., Schiff, C., Seppä, H., Thomas, E.) Recent warming reverses long-term arctic cooling. Science 325, (2009). 12361239.Google Scholar
Khotinskiy, N.A. Holocene Vegetation History. Velichko, A.A. Late Quaternary Environments of the Soviet Union. (1984). Longman, London. 179200.Google Scholar
Kremenetski, C.V., Sulerzhitsky, L.D., and Hantemirov, R. Holocene history of the Northern Range limits of some trees and shrubs in Russia. Arctic and Alpine Research 30, (1998). 317333.Google Scholar
Kultti, S., Väliranta, M., Sarmaja-Korjonen, K., Solovieva, N., Virtanen, T., Kauppila, T., and Eronen, M. Palaeoecological evidence of changes in vegetation and climate during the Holocene in the pre-Polar Urals, northeast European Russia. Journal of Quaternary Science 18, (2003). 503520.CrossRefGoogle Scholar
Kultti, S., Oksanen, P., and Väliranta, M. Holocene tree line, permafrost, and climate dynamics in the Nenets Region, East European Arctic. Canadian Journal of Earth Sciences 41, (2004). 11411158.Google Scholar
MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., and Gattaulin, V.N. Holocene treeline history and climate change across northern Eurasia. Quaternary Research 53, (2000). 302311.Google Scholar
MacDonald, G.M., Kremenetski, K.V., and Beilman, D.W. Climate change and the northern Russian treeline zone. Philosophical Transactions of the Royal Society of London. Series B 363, (2008). 22852299.CrossRefGoogle ScholarPubMed
MacDonald, G.M. Some Holocene palaeoclimatic and palaeoenvironmental perspectives on Arctic/Subarctic climate warming and the IPCC 4th Assessment Report. Journal of Quaternary Science 25, (2010). 3947.Google Scholar
Mangerud, J., Svendsen, J.I., and Astakhov, V.I. Age and extent of the Barents and Kara ice sheets in Northern Russia. Boreas 28, (1999). 4680.Google Scholar
Mangerud, J., Jakobsson, M., Alexanderson, H., Astakhov, V., Clarke, G.K.C., Henriksen, M., Hjort, C., Krinner, G., Lunkka, J.-P., Möller, P., Murray, A., Nikolskaya, O., Saarnisto, M., and Svendsen, J.I. Ice-dammed lakes and rerouting of the drainage of northern Eurasia during the Last Glaciation. Quaternary Science Reviews 23, (2004). 13131332.Google Scholar
Mazhitova, G., Oberman, N., (2003). Permafrost of the Usa River Basin. Digital Media. National Snow and Ice Data Center/World Data Center for Glaciology, Boulder, Colorado. http://nsidc.org/data/docs/fgdc/ggd614_map_usariver/ (12 March (2009).Google Scholar
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., and Zhao, Z.-C. Global climate projections. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Avery, K.B., Tignor, M., and Miller, H.L. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (2007). Cambridge University Press, Cambridge. 747845.Google Scholar
Miller, G.H., Alley, R.B., Brigham-Grette, J., Fitzpatrick, J.J., Polyak, L., Serreze, M.C., and White, J.W.C. Arctic amplification: can the past constrain the future?. Quaternary Science Reviews 29, (2010). 17791790.Google Scholar
Miller, G.H., Brigham-Grette, J., Alley, R.B., Anderson, L., Bauch, H.A., Douglas, M.S.V., Edwards, M.E., Elias, S.A., Finney, B.P., Fitzpatrick, J.J., Funder, S.V., Herbert, T.D., Hinzman, L.D., Kaufman, D.S., MacDonald, G.M., Polyak, L., Robock, A., Serreze, M.C., Smol, J.P., Spielhagen, R., White, J.W.C., Wolfe, A.P., and Wolff, E.W. Temperature and precipitation history of the Arctic. Quaternary Science Reviews 29, (2010). 16791715.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell, Oxford.Google Scholar
Oksanen, P.O., Kuhry, P., and Alekseeva, R.N. Holocene development of the Rogovaya River peat plateau, European Russian Arctic. The Holocene 11, (2001). 2540.Google Scholar
Oksanen, P.O., (2005). Development of palsa mires on the northern European continent in relation to Holocene climatic and environmental changes. PhD thesis. Acta Universitatis Ouluensis A 446.Google Scholar
Paus, A., Svendsen, J.I., and Matiouchkov, A. Late Weichselian (Valdaian) and Holocene vegetation and environmental history of the northern Timan Ridge, European Arctic Russia. Quaternary Science Reviews 22, (2003). 22852302.CrossRefGoogle Scholar
Payette, S., Eronen, M., and Jasinski, P. The circumboreal tundra-taiga interface: late Pleistocene and Holocene changes. Ambio Special Report 12, (2002). 1522.Google Scholar
Prentice, I.C. Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods. Review of Palaeobotany and Palynology 31, (1980). 71104.Google Scholar
R Development Core Team, (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50, 000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Rekacewicz, P., (1998). Ecosystems of Northwest Russia. Barentswatch Atlas, GRID-Arendal, United Nations Environment Programme. http://maps.grida.no/go/graphic/ecosystems_in_northwest_russia (3 April (2009).Google Scholar
Renssen, H., Seppä, H., Heiri, O., Roche, D.M., Goosse, H., and Fichefet, T. The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, (2009). 411414.Google Scholar
Ritchie, J.C. Climate change and vegetation response. Vegetatio 67, (1986). 6574.Google Scholar
Sarmaja-Korjonen, K., Kultti, S., Solovieva, N., and Väliranta, M. Mid-Holocene palaeoclimatic and palaeohydrological conditions in northeastern European Russia: a multi-proxy study of Lake Vankavad. Journal of Paleolimnology 30, (2003). 415426.Google Scholar
Seppä, H., and Birks, H.J.B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. Holocene 11, (2001). 527537.Google Scholar
Seppä, H., Nyman, M., Korhola, A., and Weckström, J. Changes of tree-lines and alpine vegetation in relation to post-glacial climate changes in northern Fennoscandia based on pollen and chironomid records. Journal of Quaternary Science 17, (2002). 287301.Google Scholar
Seppä, H., Birks, H.J.B., Odland, A., Poska, A., and Veski, S. A modern pollen–climate calibration set from northern Europe: developing and testing a tool for palaeoclimatological reconstructions. Journal of Biogeography 31, (2004). 251267.CrossRefGoogle Scholar
Seppä, H., Hammarlund, D., and Antonsson, K. Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in southcentral Sweden: implications for atmospheric and oceanic forcings of climate. Climate Dynamics 25, (2005). 285297.CrossRefGoogle Scholar
Seppä, H., MacDonald, G.M., Birks, H.J.B., Gervais, B.R., and Snyder, J.A. Late-Quaternary summer temperature changes in the North-European tree-line region. Quaternary Research 69, (2008). 404412.Google Scholar
Seppä, H., Bjune, A.E., Telford, R.J., Birks, H.J.B., and Veski, S. Last nine-thousand years of temperature variability in Northern Europe. Climate Past 5, (2009). 523535.Google Scholar
Serebryanny, L., Andreev, A., Malyasova, E., Tarasov, P., and Romanenko, F. Lateglacial and early-Holocene environments of Novaya Zemlya and the Kara Sea Region of the Russian Arctic. Holocene 8, (1998). 323330.Google Scholar
Snyder, J.A., MacDonald, G.M., Forman, S.L., Tarasov, G.A., and Mode, W.N. Postglacial climate and vegetation history, north-central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnyshnoe-3. Boreas 26, (2000). 329346.Google Scholar
Steig, E.J. Mid Holocene climate change. Science 286, (1999). 14851487.Google Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen Spores 13, (1971). 615621.Google Scholar
Svendsen, J.I., Astakhov, V.I., Yu, D., Bolshiyanov, I.D., Dowdeswell, J.A., Gataullin, V., Hjort, C., Hubberten, H.W., Larsen, E., Mangerud, J., Melles, M., Möller, P., Saarnisto, M., and Siegert, M.J. Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, (1999). 234242.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H.W., Ingólfsson, Ó., Jakobsson, M., Kjær, K.H., Larsen, E., Lokrantz, H., Lunkka, J.P., Lyså, A., Mangerud, J., Matiouchkov, A., Murray, A., Möller, P., Niessen, F., Nikolskaya, O., Polyak, L., Saarnisto, M., Siegert, C., Siefert, M.J., Spielhagen, R.F., and Stein, R. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, (2004). 12291271.Google Scholar
Swann, A.L., Fung, I.Y., Levis, S., Bonan, G.B., and Doney, S.C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proceedings of the National Academy of Science 107, (2010). 12951300.Google Scholar
Sweeney, C.A. A key for identification of stomata of the native conifers of Scandinavia. Review of Palaeobotany and Palynology 128, (2004). 281290.Google Scholar
Tarasov, P.E., Webb, T. III, Andreev, A.A., Afanas'eva, N.B., Berezina, N.A., Bezusko, L.G., Blyakharchuk, T.A., Bolikhovskaya, N.S., Cheddadi, R., Chernavskaya, M.M., Chernova, G.M., Dorofeyuk, N.I., Dirksen, V.G., Elina, G.A., Filimonova, L.V., Glebov, F.Z., Guiot, J., Gunova, V.S., Harrison, S.P., Jolly, D., Khomutova, V.I., Kvavadze, E.V., Osipova, I.M., Panova, N.K., Prentice, I.C., Saarse, L., Sevastyanov, D.V., Volkova, V.S., and Zernitskaya, V.P. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. Journal of Biogeography 25, (1998). 10291053.Google Scholar
Taskaev, A.I., Gladkov, V.P., Degtereva, S.V., Alekseeva, R.N., (1996). Okhranyaemye prirodnye territorii Respubliki Komi (“Protected natural areas of the Komi Republic”, in Russian.). Map. Scale 1:200, 000. Edited by Kvorov, G.V.. VTU Gsh, Saint Petersburg.Google Scholar
ter Braak, C.J.F., and Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 270 (1993). 485502.Google Scholar
Tinner, W., Bigler, C., Gedye, S., Gregory-Eaves, I., Jones, R.T., Kaltenrieder, P., Krähenbühl, U., and Hu, F.-S. A 700-year palaeoecological record of boreal ecosystem responses to climatic variation from Alaska. Ecology 89, (2008). 729743.Google Scholar
Väliranta, M., Kaakinen, A., and Kuhry, P. Holocene climate and landscape evolution East of the Pechora Delta, East-European Russian Arctic. Quaternary Research 59, (2003). 335344.Google Scholar
Väliranta, M., Kultti, S., and Seppä, H. Vegetation dynamics during the Younger Dryas–Holocene transition in the extreme northern taiga zone, northeastern European Russia. Boreas 35, (2006). 202212.Google Scholar
Väliranta, M., Kaakinen, A., Kuhry, P., Kultti, S., Salonen, J.S., Seppä, H., (2011). Scattered late-glacial and early-Holocene tree populations as dispersal nuclei for forest development in NE European Russia. Journal of Biogeography 38, 922932.Google Scholar
Velichko, A.A., Andreev, A.A., and Klimanov, V.A. Climate and vegetation dynamics in the tundra and forest zone during the late glacial and Holocene. Quaternary International 41, 42 (1997). 7196.Google Scholar
Velichko, A.A., Catto, N., Drenova, A.N., Klimanov, V.A., Kremenetski, K.V., and Nechaev, V.P. Climate changes in East Europe and Siberia at the Late glacial–Holocene transition. Quaternary International 91, (2002). 7599.Google Scholar
Virtanen, T., Mikkola, K., Nikula, A., Christensen, J.H., Mazhitova, G.G., Oberman, N.G., and Kuhry, P. Modeling the location of the forest line in northeast European Russia with remotely sensed vegetation and GIS-based climate and terrain data. Arctic, Antarctic, and Alpine Research 36, (2004). 314322.Google Scholar
Wanner, H., Beer, J., Butikofer, J., Crowley, T.J., Cubasch, U., Fluckiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Kuttel, M., Muller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., and Widmann, M. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, (2008). 17911828.Google Scholar
Winton, M. Amplified Arctic climate change: what does surface albedo feedback have to do with it?. Geophysical Research Letters 33, (2006). L03701 Google Scholar
Wohlfarth, B., Filimonova, L., Bennike, O., Björkman, L., Brunnberg, L., Lavrova, N., Demidov, I., and Possnert, G. Late-glacial and early Holocene environmental and climatic change at lake Tambichozero, southeastern Russian Karelia. Quaternary Research 58, (2002). 261272.Google Scholar