Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T00:39:07.410Z Has data issue: false hasContentIssue false

Holocene regional climate change and formation of southern Ontario's largest swamp inferred from a kettle-lake pollen record

Published online by Cambridge University Press:  13 September 2021

Eunji Byun
Affiliation:
Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON, M5S 3B1, Canada
Sharon A. Cowling
Affiliation:
Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON, M5S 3B1, Canada
Sarah A. Finkelstein*
Affiliation:
Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, ON, M5S 3B1, Canada
*
*Corresponding author: Sarah A. Finkelstein, Email: sarah.finkelstein@utoronto.ca

Abstract

Greenock Swamp wetland complex is one of few remaining natural wetlands in the Great Lakes region and, at 89 km2 in areal extent, is currently the largest hardwood swamp in southern Ontario, Canada. We present here pollen and sediment records from a kettle hole (Schmidt Lake) and adjacent Thuja occidentalis swamp to reconstruct regional paleoclimate and vegetation history, and to assess the timing and development of the swamp ecosystem and associated carbon stocks. Pollen-inferred paleoclimate reconstructions show the expected warming in the Early Holocene, and indicate the Mid-Holocene initiation of lake-effect snow. This enhanced snowfall may have maintained high water tables in the adjacent wetland since ca. 8300 years ago, promoting the establishment of a swamp dominated by Thuja occidentalis. Carbon accumulation rates in a >2-m-long peat core collected from a Thuja occidentalis stand adjacent to Schmidt Lake are 30–40 g C/m2/yr, which is higher than the average of northern high-latitude peatlands. Using topographic and hydrological parameters, we estimated that mean swamp peat thicknesses could exceed 2 m. Thus, this study encourages future investigations on temperate swamps from the perspective of hitherto underestimated Holocene carbon sinks and shows the importance of regional hydroclimate in supporting swamp ecosystems.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

Present address: Ecohydrology Research Group, Department of Earth and Environmental Sciences and Water Institute, 200 University Ave W, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada

References

REFERENCES

Abrams, M.D., 2001. Eastern white pine versatility in the presettlement forest: this eastern giant exhibited vast ecological breadth in the original forest but has been on the decline with subsequent land-use changes. BioScience 51, 967979.CrossRefGoogle Scholar
Armentano, T.V., Menges, E.S., 1986. Patterns of change in the carbon balance of organic soil-wetlands of the temperate zone. The Journal of Ecology 74, 755774.CrossRefGoogle Scholar
Ausseil, A.-G.E., Jamali, H., Clarkson, B.R., Gloubiewski, W.E.. 2015. Soil carbon stocks in wetlands of New Zealand and impact of land conversion since European settlement. Wetlands Ecology and Management 23, 947961.CrossRefGoogle Scholar
Bennett, K.D., 1985. The spread of Fagus grandifolia across eastern North America during the last 18 000 years. Journal of Biogeography 12, 147164.CrossRefGoogle Scholar
Bennett, K.D., 1987. Holocene history of forest trees in southern Ontario. Canadian Journal of Botany 65, 17921801.CrossRefGoogle Scholar
Bennett, K.D., 1992. Holocene history of forest trees on the Bruce Peninsula, southern Ontario. Canadian Journal of Botany 70, 618.CrossRefGoogle Scholar
Bennett, K.D., 1993. Holocene forest dynamics with respect to southern Ontario. Review of Palaeobotany and Palynology 79, 6981.CrossRefGoogle Scholar
Bennett, K.D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist. https://doi.org/10.1111/j.1469-8137.1996.tb04521.x.CrossRefGoogle Scholar
Bennett, K.D., Fuller, J.L., 2002. Determining the age of the mid-Holocene Tsuga cana densis [sic] (hemlock) decline, eastern North America. The Holocene 12, 421429.CrossRefGoogle Scholar
Birks, H.J.B., 2005. Chapter 9. Quantitative palaeoenvironmental econstructions from Holocene biological data. In: Birks, J., Battarbee, R., Mackay, A., Oldfield, F. (Eds.), Global Change in the Holocene. 1 st ed. Routledge, London, pp. 228241.Google Scholar
Bishop, I.J., Bennion, H., Sayer, C.D., Patmore, I.R., Yang, H., 2019. Filling the “data gap”: using paleoecology to investigate the decline of Najas flexilis (a rare aquatic plant). Geo: Geography and Environment 2019, e00081.Google Scholar
Blaauw, M., Christen, J.A., undated. Bacon manual—v2.3.9.1. Available at: https://chrono.qub.ac.uk/blaauw/manualBacon_2.3.pdf.Google Scholar
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Booth, R.K., Jackson, S.T., Thompson, T.A., 2002. Paleoecology of a northern Michigan lake and the relationship among climate, vegetation, and Great Lakes water levels. Quaternary Research 57, 120130.CrossRefGoogle Scholar
Booth, R.K., Jackson, S.T., Gray, C.E.D., 2004. Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan. Quaternary Research 61, 113.CrossRefGoogle Scholar
Booth, R.K., Brewer, S., Blaauw, M., Minckley, T.A., Jackson, S.T., 2012. Decomposing the mid-holocene Tsuga decline in eastern North America. Ecology 93, 18411852.CrossRefGoogle ScholarPubMed
Boyd, I.L., Freer-Smith, P.H., Gilligan, C.A., Godfray, H.C.J., 2013. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773. https://doi.org/10.1126/science.1235773.CrossRefGoogle ScholarPubMed
Bridgham, S.D., Megonigal, J.P., Keller, J.K., Bliss, N.B., Trettin, C., 2006. The carbon balance of North American wetlands. Wetlands 26, 889916.CrossRefGoogle Scholar
Brown, T.A., Nelson, D.E., Mathewes, R.W., Vogel, J.S., Southon, J.R., 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32, 205212.CrossRefGoogle Scholar
Brugam, R.B., Johnson, S.M.C., 1997. Holocene lake-level rise in the Upper Peninsula of Michigan, USA, as indicated by peatland growth. The Holocene 7, 355359.CrossRefGoogle Scholar
Buffam, I., Carpenter, S.R., Yeck, W., Hanson, P.C., Turner, M.G., 2010. Filling holes in regional carbon budgets: predicting peat depth in a north temperate lake district. Journal of Geophysical Research 115, G01005. https://doi.org/10.1029/2009jg001034.CrossRefGoogle Scholar
Bunting, M.J., Warner, B.G., 1999. Late Quaternary vegetation dynamics and hydroseral development in a shrub swamp in southern Ontario, Canada. Canadian Journal of Earth Sciences 36, 16031616.CrossRefGoogle Scholar
Byun, E., Finkelstein, S.A., Cowling, S.A., Badiou, P., 2018. Potential carbon loss associated with post-settlement wetland conversion in southern Ontario, Canada. Carbon Balance and Management 13, 6. https://doi.org/10.1186/s13021-018-0094-4.CrossRefGoogle ScholarPubMed
Cai, S., Yu, Z., 2011. Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania. Quaternary Research 75, 531540.CrossRefGoogle Scholar
Calcote, R., 2003. Mid-Holocene climate and the hemlock decline: the range limit of Tsuga canadensis in the western Great Lakes region, USA. The Holocene 13, 215224.CrossRefGoogle Scholar
Campbell, D.R., Duthie, H.C., Warner, B.G., 1997. Post-glacial development of a kettle-hole peatland in southern Ontario. Écoscience 4, 404418.CrossRefGoogle Scholar
Campbell, I.D., McAndrews, J.H., 1993. Forest disequilibrium caused by rapid Little Ice Age cooling. Nature 366, 336338.CrossRefGoogle Scholar
Chapman, L.J., Putnam, D.F., 1984. The Physiography of Southern Ontario. Ontario Geological Survey Special Volume 2. 3rd ed. Ontario Geological Survey.Google Scholar
Cowan, W.R., Pinch, J.J., 1986. Quaternary Geology of the Walkerton-Kincardine Area. Map P.2956. Southern Ontario, Ontario Geological Survey.Google Scholar
Dawson, A., Paciorek, C.J., McLachlan, J.S., Goring, S., Williams, J.W., Jackson, S.T., 2016. Quantifying pollen-vegetation relationships to reconstruct ancient forests using 19th-century forest composition and pollen data. Quaternary Science Reviews 137, 156175.CrossRefGoogle Scholar
Dinel, H., Richard, P.J.H., Levésque, P.E.M., Larouche, A., 1986. Origine et évolution du marais tourbeux de Keswick, Ontario, par l'analyse pollinique et macrofossile. Canadian Journal of Earth Sciences 23, 11451155.CrossRefGoogle Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Faegri, K., Kaland, P.E., Krzywinski, K. (Eds.). Wiley, Chichester, New York, 328 pp.Google Scholar
Fahey, R.T., Lorimer, C.G., 2014. Persistence of pine species in late-successional forests: evidence from habitat-related variation in stand age structure. Journal of Vegetation Science 25, 584600.CrossRefGoogle Scholar
Fahey, R.T., Lorimer, C.G., Mladenoff, D.J., 2012. Habitat heterogeneity and life-history traits influence presettlement distributions of early-successional tree species in a late-successional, hemlock-hardwood landscape. Landscape Ecology 27, 9991013.CrossRefGoogle Scholar
Finkelstein, S.A., Davis, A.M., 2006. Paleoenvironmental records of water level and climatic changes from the middle to late holocene at a Lake Erie coastal wetland, Ontario, Canada. Quaternary Research 65, 3343.CrossRefGoogle Scholar
Fordham, D.A., Saltré, F., Haythorne, S., Wigley, T.M.L., Otto-Bliesner, B.L., Chan, K.C., Brook, B.W., 2017. PaleoView: a tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 13481358.CrossRefGoogle Scholar
Franklin, J., Serra-Diaz, J.M., Syphard, A.D., Regan, H.M., 2016. Global change and terrestrial plant community dynamics. Proceedings of the National Academy of Sciences 113, 37253734.CrossRefGoogle ScholarPubMed
Fuller, J.L., 1997. Holocene forest dynamics in southern Ontario, Canada: fine-resolution pollen data. Canadian Journal of Botany 75, 17141727.CrossRefGoogle Scholar
Fuller, J.L., 1998. Ecological impact of the mid-Holocene hemlock decline in southern Ontario, Canada. Ecology 79, 23372351.CrossRefGoogle Scholar
Gałka, M., Tobolski, K., Kołaczek, P., 2012. The Holocene decline of slender naiad (Najas flexilis (Willd.) Rostk. & W.L.E. Schmidt) in NE Poland in the light of new palaeobotanical data. Acta Palaeobotanica 52, 127138.Google Scholar
Glamis Historical Researchers, 2014. Glammis Then and Now. Kaminski, J. (Ed.), C&I Graphics, Kincardine, ON. Available at: http://www.glammis.ca/book/ThenAndNow.pdf.Google Scholar
Gonzales, L.M., Grimm, E.C., Williams, J.W., Nordheim, E.V., 2009. A modern plant-climate research dataset for modelling eastern North American plant taxa. Grana 48, 118.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, 1335.CrossRefGoogle Scholar
Gutenberg, L., Krauss, K.W., Qu, J.J., Ahn, C., Hogan, D., Zhu, Z., Xu, C., 2019. Carbon dioxide emissions and methane flux from forested wetland soils of the Great Dismal Swamp, USA. Environmental Management 64, 190200.CrossRefGoogle ScholarPubMed
Haynes, R.R., 1979. Revision of North and Central American Najas. SIDA, Contributions to Botany 8, 3456. Available at: https://www.jstor.org/stable/41966550.Google Scholar
He, H., Jansson, P.-E., Svensson, M., Björklund, J., Tarvainen, L., Klemedtsson, L., Kasimir, Å., 2016. Forests on drained agricultural peatland are potentially large sources of greenhouse gases—insights from a full rotation period simulation. Biogeosciences 13, 23052318.CrossRefGoogle Scholar
Hellman, S., Gaillard, M.-J., Broström, A., Sugita, S., 2008. The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. Journal of Quaternary Science 23, 2142.CrossRefGoogle Scholar
Henne, P.D., Hu, F.S., 2010. Holocene climatic change and the development of the lake-effect snowbelt in Michigan, USA. Quaternary Science Reviews 29, 940951.CrossRefGoogle Scholar
Hoffman, D.W., Richards, N.R., 1954. Soil Survery of Bruce County. Report No. 16 of the Ontario Soil Survey. Guelph, Ontario, Experimental Farms Service, Canada Department of Agriculture and the Ontario Agricultural College, 110 pp.Google Scholar
Hommeltenberg, J., Schmid, H.P., Drösler, M., Werle, P., 2014. Can a bog drained for forestry be a stronger carbon sink than a natural bog forest? Biogeosciences 11, 34773493.CrossRefGoogle Scholar
Ireland, A.W., Booth, R.K., Hotchkiss, S.C., Schmitz, J.E., 2012. Drought as a trigger for rapid state shifts in kettle ecosystems: implications for ecosystem responses to climate change. Wetlands 32, 9891000.CrossRefGoogle Scholar
Jiménez-Moreno, G., Anderson, R.S., Shuman, B.N., Yackulic, E., 2019. Forest and lake dynamics in response to temperature, North American monsoon and ENSO variability during the Holocene in Colorado (USA). Quaternary Science Reviews 211, 5972.CrossRefGoogle Scholar
Johnson, J.W., 2000. Greenock Swamp, Area of Natural and Scientific Interest (A.N.S.I.): A Life Science Inventory. Owen Sound, ON, Ontario Ministry of Natural Resources.Google Scholar
Jones, R.A., Williams, J.W., Jackson, S.T., 2017. Vegetation history since the last glacial maximum in the Ozark highlands (USA): a new record from Cupola Pond, Missouri. Quaternary Science Reviews 170, 174187.CrossRefGoogle Scholar
Juggins, S., 2019. rioja: Analysis of Quaternary Science Data. R package version 0.9-26. Available at: https://cran.r-project.org/package=rioja.Google Scholar
Kapp, R.O., Davis, O.K., King, J.E., 2000. Kapp's Pollen and Spores. 2nd ed. College Station, TX, American Association of Stratigraphic Palynologists Foundation Publication.Google Scholar
Karasiewicz, M.T., Hulisz, P., Noryśkiewicz, A.M., Krześlak, I., Świtoniak, M., 2014. The record of hydroclimatic changes in the sediments of a kettle-hole in a young glacial landscape (north-central Poland). Quaternary International 328–329, 264276.CrossRefGoogle Scholar
Kitaba, I., Nakagawa, T., 2017. Black ceramic spheres as marker grains for microfossil analyses, with improved chemical, physical, and optical properties. Quaternary International 455, 166169.CrossRefGoogle Scholar
Kolka, R., Trettin, C., Tang, W., Krauss, K., Bansal, S., Drexler, J., Wickland, K., et al. 2018. Chapter 13: terrestrial wetlands. In: Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M.A., Najjar, R.G., Reed, S.C., Romero-Lankao, P., Zhu, Z. (Eds.), Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. Washington, DC, U.S. Global Change Research Program, pp. 507567.Google Scholar
Kost, M.A., Albert, D.A., Cohen, J.G., Slaughter, B.S., Schillo, R.K., Weber, C.R., Chapman, K.A., 2007. Natural communities of Michigan: classification and description. Michigan Natural Features Inventory. Report No. 2007-21, Michigan State University, Lansing, MI. Available at: https://mnfi.anr.msu.edu/communities/description/10659/Northern-Hardwood-Swamp.Google Scholar
Kujawa, E.R., Goring, S., Dawson, A., Calcote, R., Grimm, E.C., Hotchkiss, S.C., Jackson, S.T., et al. , 2016. The effects of anthropogenic land cover change on pollen-vegetation relationships in the American Midwest. Anthropocene 15, 6071.CrossRefGoogle Scholar
Kupryjanowicz, M., Fiłoc, M., Czerniawska, D., 2018. Occurrence of slender naiad (Najas flexilis (Willd.) Rostk. & W. L. E. Schmidt) during the Eemian Interglacial—an example of a palaeolake from the Hieronimowo site, NE Poland. Quaternary International 467, 117130.CrossRefGoogle Scholar
Łachacz, A., Nitkiewicz, M., Pisarek, W., 2009. Soil conditions and vegetation on gyttia lands in the Masurian Lakeland. In: Lachacz, A. (Ed.), Wetlands—Their Functions and Protection Vol. 2. Contemporary Problems of Management and Environmental Protection, Universyty of Warmia and Mazury in Olsztyn, pp. 6194.Google Scholar
Le Stum-Boivin, É., Magnan, G., Garneau, M., Fenton, N.J., Grondin, P., Bergeron, Y., 2019. Spatiotemporal evolution of paludification associated with autogenic and allogenic factors in the black spruce-moss boreal forest of Québec, Canada. Quaternary Research 91, 520532.CrossRefGoogle Scholar
Leifeld, J., Müller, M., Fuhrer, J., 2011. Peatland subsidence and carbon loss from drained temperate fens. Soil Use and Management 27, 170176.CrossRefGoogle Scholar
Lévesque, P.E.M., Dinel, H., Larouche, A., 1988. Guide to the Identification of Plant Macrofossils in Canadian Peatlands. Publication No. 1817. Land Research Centre, Research Branch, Agriculture Canada, Ottawa, Ontario. https://doi.org/10.5962/bhl.title.53794.CrossRefGoogle Scholar
Lewis, C.F.M., Moore, T.C., Rea, D.K., Dettman, D.L., Smith, A.M., Mayer, L.A., 1994. Lakes of the Huron basin: their record of runoff from the laurentide ice sheet. Quaternary Science Reviews 13, 891922.CrossRefGoogle Scholar
Lewis, C.F.M., Blasco, S.M., Gareau, P.L., 2005. Glacial isostatic adjustment of the Laurentian Great Lakes Basin: using the empirical record of strandline deformation for reconstruction of Early Holocene paleo-lakes and discovery of a hydrologically closed phase. Géographie Physique et Quaternaire 59, 187210.CrossRefGoogle Scholar
Lewis, C.F.M., Heil, C.W., Hubeny, J.B., King, J.W., Moore, T.C. Jr., Rea, D.K., 2007. The Stanley unconformity in Lake Huron basin: evidence for a climate-driven closed lowstand about 7900 14C BP, with similar implications for the Chippewa lowstand in Lake Michigan basin. Journal of Paleolimnology 37, 435452.CrossRefGoogle Scholar
Loder, A.L., Finkelstein, S.A., 2020. Carbon accumulation in freshwater marsh soils: a synthesis for temperate North America. Wetlands 40, 11731187.CrossRefGoogle Scholar
Loisel, J., Yu, Z., Beilman, D.W., Camill, P., Alm, J., Amesbury, M.J., Anderson, D., et al. , 2014. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene 24, 10281042.CrossRefGoogle Scholar
Magnuson, J.J., Webster, K.E., Assel, R.A., Bowser, C.J., Dillon, P.J., Eato, J.G., Evans, H.E., et al. 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrological Processes 11, 825871.3.0.CO;2-G>CrossRefGoogle Scholar
Mansell, W., Erwin, K.L., Garraway, M.D., Howell, H.D., Jones, R.N., Harrison, T.G., 2004. A Tale of Two Rivers: The Development of Wetland and Watershed Restoration Concepts. Hanover, Ontario, Saugeen Conservation Publication.Google Scholar
Marks, C.O., 2017. The ecological role of American Elm (Ulmus americana L.) in floodplain forests of northeastern North America. In: Pinchot, C.C., Knight, K.S., Haugen, L.M., Flower, C.E., Slavicek, J.M. (Eds.), Proceedings of the American Elm Restoration Workshop 2016, 2016 October 25–27; Lewis Center, OH. General Technical Report NRS-P-174. U.S. Department of Agriculture, Forest Service, Northern Research Station, Newton, Square, PA, pp. 7498. Available at: https://www.fs.fed.us/nrs/pubs/gtr/gtr-nrs-p-174papers/10marks-gtr-p-174.pdf.Google Scholar
Marsicek, J.P., Shuman, B.N., Bartlein, P.J., Shafer, S.L., Brewer, S., 2018. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 9296.CrossRefGoogle ScholarPubMed
Marsicek, J.P., Shuman, B.N., Brewer, S., Foster, D.R., Oswald, W.W., 2013. Moisture and temperature changes associated with the mid-Holocene Tsuga decline in the northeastern United States. Quaternary Science Reviews 80, 129142.CrossRefGoogle Scholar
McAndrews, J.H., 1981. Late Quaternary climate of Ontario: temperature trends from the fossil pollen record. In: Mahaney, W.C. (Ed.), Quaternary Paleoclimate. Geo Abstracts, Norwich, England, pp. 319333.Google Scholar
McAndrews, J.H., Berti, A.A., Norris, G., 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region. Life Sciences Miscellaneous Publication, Royal Ontario Museum, Toronto, 61 pp.Google Scholar
McCarthy, F., McAndrews, J., 2012. Early Holocene drought in the Laurentian Great Lakes basin caused hydrologic closure of Georgian Bay. Journal of Paleolimnology 47, 411428.CrossRefGoogle Scholar
McNamara, J.P., Siegel, D.I., Glaser, P.H., Beck, R.M., 1992. Hydrogeologic controls on peatland development in the Malloryville Wetland, New York (USA). Journal of Hydrology 140, 279296.CrossRefGoogle Scholar
Mendyk, Ł., Markiewicz, M., Bednarek, R., Świtoniak, M., Gamrat, W.W., Krześlak, I., Sykuła, M., Gersztyn,m, L., Kupniewska, A., 2016. Environmental changes of a shallow kettle lake catchment in a young glacial landscape (Sumowskie Lake catchment), North-Central Poland. Quaternary International 418, 116131.CrossRefGoogle Scholar
Ministry of Natural Resources and Forestry (MNRF), 2014. Ontario Wetland Evaluation System Southern Manual (Version 3.3). 3rd ed. Queen's Printer for Ontario, Ottawa.Google Scholar
Mirza, C., Irwin, R.W., 1964. Determination of subsidence of an organic soil in southern Ontario. Canadian Journal of Soil Science 44, 248253.CrossRefGoogle Scholar
Mitsch, W.J., Gosselink, J.G., 2015. Wetlands. 5th ed. Hoboken, New Jersey, John Wiley and Sons, Inc.Google Scholar
Munoz, S.E., Gajewski, K., 2010. Distinguishing prehistoric human influence on late-Holocene forests in southern Ontario, Canada. The Holocene 20, 967981.CrossRefGoogle Scholar
Nahlik, A.M., Fennessy, M.S., 2016. Carbon storage in US wetlands. Nature Communications 7, 13835. https://doi.org/10.1038/ncomms13835.CrossRefGoogle ScholarPubMed
National Wetlands Working Group, 1988. Wetlands of Canada. Ecological Land Classification Series, No. 24. Sustainable Development Branch, Environment Canada, Montréal, 452 pp.Google Scholar
New, M., Lister, D., Hulme, M., Makin, I., 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21, 125.CrossRefGoogle Scholar
Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA), undated. Classifying Prime and Marginal Agricultural Soils and Landscapes: Guidelines for Application of the Canada Land Inventory in Ontario. Available at: http://www.omafra.gov.on.ca/english/landuse/classify.htm#subd%0A. [accessed 28 February 2020]Google Scholar
Ontario Geological Survey, 2010. Surficial geology of southern Ontario. Miscellaneous Release—Data 128 - Revised. Sudbury, ON, Queen's Printer for Ontario.Google Scholar
Ott, C.A., Chimner, R.A., 2016. Long-term peat accumulation in temperate forested peatlands (Thuja occidentalis swamps) in the Great Lakes region of North America. Mires and Peat 18, 19. http://www.mires-and-peat.net/pages/volumes/map18/map1801.php.Google Scholar
Overpeck, J.T., Webb, T. III, Prentice, I.C., 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, 87108.CrossRefGoogle Scholar
Pederson, N., D'Amato, A.W., Dyer, J.M., Foster, D.R., Goldblum, D., Hart, J.L., Hessl, A.E., et al. 2015. Climate remains an important driver of post-European vegetation change in the eastern United States. Global Change Biology 21, 21052110.CrossRefGoogle ScholarPubMed
Provincial Mapping Unit, 2015. Southwestern Ontario Orthophotography Project (SWOOP) 2015 Digital Surface Model (DSM). Available at: https://geohub.lio.gov.on.ca/documents/southwestern-ontario-orthophotography-swoop-2015/about. [accessed 28 February 2020]Google Scholar
Ramiadantsoa, T., Stegner, M.A., Williams, J.W., Ives, A.R., 2019. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, 114.CrossRefGoogle ScholarPubMed
Rossi, P.M., Ala-aho, P., Ronkanen, A.K., Kløve, B., 2012. Groundwater-surface water interaction between an esker aquifer and a drained fen. Journal of Hydrology 432–433, 5260.CrossRefGoogle Scholar
Roulet, N.T., 1990. Hydrology of a headwater basin wetland: groundwater discharge and wetland maintenance. Hydrological Processes 4, 387400.CrossRefGoogle Scholar
Sampson, H.C., 1930. Succession in the swamp forest formation in northern Ohio. Ohio Journal of Science 30, 340357. Available at: http://hdl.handle.net/1811/2472.Google Scholar
Scott, R.W., Huff, F.A., 1996. Impacts of the Great Lakes on regional climate conditions. Journal of Great Lakes Research 22, 845863.CrossRefGoogle Scholar
Shiller, J.A., Finkelstein, S.A., Cowling, S.A., 2014. Relative importance of climatic and autogenic controls on Holocene carbon accumulation in a temperate bog in southern Ontario, Canada. The Holocene 24, 11051116.CrossRefGoogle Scholar
Shi, Q., Xue, P., 2019. Impact of lake surface temperature variations on lake effect snow over the Great Lakes region. Journal of Geophysical Research: Atmospheres 124, 12,55312,567.CrossRefGoogle Scholar
Shuman, B., Bartlein, P., Logar, N., Newby, P., Webb, T. III., 2002. Parallel climate and vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. Quaternary Science Reviews 21, 17931805.CrossRefGoogle Scholar
Shuman, B.N., Marsicek, J., 2016. The structure of Holocene climate change in mid-latitude North America. Quaternary Science Reviews 141, 3851.CrossRefGoogle Scholar
Sloan, T.J., Payne, R.J., Anderson, A.R., Gilbert, P., Mauquoy, D., Newton, A.J., Andersen, R., 2018. Ground surface subsidence in an afforested peatland fifty years after drainage and planting. Mires and Peat 23. https://doi.org/10.19189/MaP.2018.OMB.348.Google Scholar
Snell, E.A., 1987. Wetland Distribution and Conversion in Southern Ontario. Working Paper No. 48, Environment Canada, Ottawa, 53 pp.Google Scholar
Sonnenburg, E., O'Shea, J., 2017. Archaeological landscapes during the 10–8 ka Lake Stanley Lowstand on the Alpena-Amberley Ridge, Lake Huron. Geoarchaeology 32, 230247.CrossRefGoogle Scholar
Suffling, R., Evans, M., Perera, A., 2003. Presettlement forest in southern Ontario: ecosystems measured through a cultural prism. Forestry Chronicle 79, 485501.CrossRefGoogle Scholar
Sugita, S., 2007a. Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. The Holocene 17, 229241.CrossRefGoogle Scholar
Sugita, S., 2007b. Theory of quantitative reconstruction of vegetation II: all you need is LOVE. The Holocene 17, 243257.CrossRefGoogle Scholar
Sugita, S., Parshall, T., Calcote, R., 2006. Detecting differences in vegetation among paired sites using pollen records. Holocene 16, 11231135.CrossRefGoogle Scholar
SVCA, 1979. Greenock Swamp Study. Formosa, Ontario, Saugeen Valley Conservation Authority.Google Scholar
Todd, A.K., Buttle, J.M., Taylor, C.H., 2006. Hydrologic dynamics and linkages in a wetland-dominated basin. Journal of Hydrology 319, 1535.CrossRefGoogle Scholar
Trondman, A.-K., Gaillard, M.-J., Sugita, S., Björkman, L., Greisman, A., Hultberg, T., Lagerås, P., Lindbladh, M., Mazier, F., 2016. Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden. Vegetation History and Archaeobotany 25, 131151.CrossRefGoogle Scholar
Van Grinsven, M., Shannon, J., Bolton, N., et al. 2018. Response of black ash wetland gaseous soil carbon fluxes to a simulated emerald ash borer infestation. Forests 9, 324.CrossRefGoogle Scholar
Viau, A.E., Gajewski, K., Sawada, M.C., Fines, P., 2006. Millennial-scale temperature variations in North America during the Holocene. Journal of Geophysical Research Atmospheres 111, D09102. https://doi.org/10.1029/2005JD006031.CrossRefGoogle Scholar
Wang, Y., Gill, J.L., Marsicek, J., Dierking, A., Shuman, B., Williams, J.W., 2016. Pronounced variations in Fagus grandifolia abundances in the Great Lakes region during the Holocene. The Holocene 26, 578591.CrossRefGoogle Scholar
Warner, B.G., Hebda, R.J., Hann, B.J., 1984. Postglacial paleoecological history of a cedar swamp, manitoulin island, Ontario, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 45, 301345.CrossRefGoogle Scholar
Warner, B.G., Kubiw, H.J., Hanf, K.I., 1989. An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340, 380384.CrossRefGoogle Scholar
Watson, B.I., Williams, J.W., Russell, J.M., Jackson, S.T., Shane, L., Lowell, T.V., 2018. Temperature variations in the southern Great Lakes during the last deglaciation: comparison between pollen and GDGT proxies. Quaternary Science Reviews 182, 7892.CrossRefGoogle Scholar
Webb, T. III, Cushing, E.J., Wright, H.E. Jr., 1983. Holocene changes in the vegetation of the Midwest. In: Wright, H.E.J. (Ed.), Late Quaternary Environments of the United States, Vol. 2, The Holocene. University of Minnesota Press, Minneapolis, pp. 142165.Google Scholar
Whitehead, D.R., 1972. Developmental and environmental history of the Dismal Swamp. Ecological Monographs 42, 301315.CrossRefGoogle Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Shuman, B., Bartlein, P.J., Minckley, T., et al. 2005. Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications. Quaternary Science Reviews 24, 18281848.CrossRefGoogle Scholar
Williams, J.W., Jackson, S.T., 2007. Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5, 475482.CrossRefGoogle Scholar
Williams, J.W., Shuman, B., 2008. Obtaining accurate and precise environmental reconstructions from the modern analog technique and North American surface pollen dataset. Quaternary Science Reviews 27, 669687.CrossRefGoogle Scholar
Wohl, E., Lininger, K.B., Baron, J., 2017. Land before water: the relative temporal sequence of human alteration of freshwater ecosystems in the conterminous United States. Anthropocene 18, 2746.CrossRefGoogle Scholar
Yu, Z., 1997. Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils. Review of Palaeobotany and Palynology 96, 241254.CrossRefGoogle Scholar
Yu, Z., 2003. Late Quaternary dynamics of tundra and forest vegetation in the southern Niagara Escarpment, Canada. New Phytologist 157, 365390.CrossRefGoogle ScholarPubMed
Yu, Z., Wright, H.E.J., 2001. Response of interior North America to abrupt climate oscillations in the North Atlantic region during the last deglaciation. Earth Science Reviews 52, 333369.CrossRefGoogle Scholar
Yu, Z., McAndrews, J.H., Siddiqi, D., 1996. Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Canadian Journal of Botany 74, 16021615.CrossRefGoogle Scholar
Supplementary material: File

Byun et al. supplementary material

Byun et al. supplementary material

Download Byun et al. supplementary material(File)
File 2.9 MB