Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:35:01.846Z Has data issue: false hasContentIssue false

Holocene climate variability on the Kola Peninsula, Russian Subarctic, based on aquatic invertebrate records from lake sediments

Published online by Cambridge University Press:  20 January 2017

Elena A. Ilyashuk*
Affiliation:
Institute of Ecology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 14 Fersman St., Apatity, Murmansk reg., 184209 Russia
Boris P. Ilyashuk
Affiliation:
Institute of Ecology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria Institute of North Industrial Ecology Problems, Kola Science Centre, Russian Academy of Sciences, 14 Fersman St., Apatity, Murmansk reg., 184209 Russia
Vasily V. Kolka
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman St., Apatity, Murmansk reg., 184209 Russia
Dan Hammarlund
Affiliation:
Department of Geology, Quaternary Sciences, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*
*Corresponding author at: Institute of Ecology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria. Fax: + 43 512 507 51799. E-mail address:elena.ilyashuk@uibk.ac.at (E.A. Ilyashuk).

Abstract

Sedimentary records of invertebrate assemblages were obtained from a small lake in the Khibiny Mountains, Kola Peninsula. Together with a quantitative chironomid-based reconstruction of mean July air temperature, these data provide evidence of Holocene climate variability in the western sector of the Russian Subarctic. The results suggest that the amplitude of climate change was more pronounced in the interior mountain area than near the White Sea coast. A chironomid-based temperature reconstruction reflects a warming trend in the early Holocene, interrupted by a transient cooling at ca. 8500–8000 cal yr BP with a maximum drop in temperature (ca. 1°C) around 8200 cal yr BP. The regional Holocene Thermal Maximum, characterized by maximum warmth and dryness occurred at ca. 7900–5400 cal yr BP. During this period, July temperatures were at least 1°C higher than at present. The relatively warm and dry climate persisted until ca. 4000 cal yr BP, when a pronounced neoglacial cooling was initiated. Minimum temperatures, ca. 1–2°C lower than at present, were inferred at ca. 3200–3000 cal yr BP. Faunal shifts in the stratigraphic profile imply also that the late-Holocene cooling was followed by a general increase in effective moisture.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexandrova, V.D. The vegetation of the tundra zones in the USSR and data about its productivity. Fuller, W.A., and Kevan, P.G. Proceedings of the Conference on Productivity and Conservation in Northern Circumpolar Lands. New Series 16, (1970). IUCN Publications, Morges. 93114.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 years ago. Geology 25, (1997). 483486.Google Scholar
Atlas Murmanskoy oblasti, Glavnoe Upravleniye Geodezii I Kartografii, Moskva. (1971). (33 pp. (in Russian)) Google Scholar
Bakke, J., Dahl, S.O., Paasche, Ø., Løvlie, R., and Nesje, A. Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during Lateglacial and Holocene. The Holocene 15, (2005). 518540.Google Scholar
Barnekow, L. Holocene tree-line dynamics and inferred climatic changes in the Abisko area, northern Sweden, based on macrofossil and pollen records. The Holocene 9, (1999). 253265.Google Scholar
Bedford, A., Jones, R.T., Lang, B., Brooks, S., and Marshall, G.D. A Late-glacial chironomid record from Hawes Water, northwest England. Journal of Quaternary Science 19, (2004). 281290.Google Scholar
Bendle, J.A.P., and Rosell-Melé, A. High-resolution alkenone sea surface temperature variability on the North Icelandic Shelf: implications for Nordic Seas palaeoclimatic development during the Holocene. The Holocene 17, (2007). 924.Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, (1996). 155170.Google Scholar
Bennett, K.D. Documentation for Psimpoll 4.10 and Pscomb 1.03. C Programs for Plotting Pollen Diagrams and Analyzing Pollen Data. (2002). Uppsala University, Uppsala.Google Scholar
Bergman, J., Hammarlund, D., Hannon, G., Barnekow, L., and Wohlfarth, B. Deglacial vegetation succession and Holocene tree-limit dynamics in the Scandes Mountains, west-central Sweden: stratigraphic data compared to megafossil evidence. Review of Palaeobotany and Palynology 134, (2005). 129151.Google Scholar
Bigler, C., Larocque, I., Peglar, S.M., Birks, H.J.B., and Hall, R. Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene 12, (2002). 481496.CrossRefGoogle Scholar
Bigler, C., Grahn, E., Larocque, I., Jeziorski, A., and Hall, R. Holocene environmental change at Lake Njulla (999 m a. s. l.), northern Sweden: a comparison with four small nearby lakes along an altitudinal gradient. Journal of Paleolimnology 29, (2003). 1329.CrossRefGoogle Scholar
Bigler, C., Barnekow, L., Heinrichs, M.L., and Hall, R.I. Holocene environmental history of Lake Vuolep Njakajaure (Abisko National Park, northern Sweden) reconstructed using biological proxy indicators. Vegetation History and Archaeobotany 15, (2006). 309320.Google Scholar
Birks, H.J.B. Quantitative palaeoenvironmental reconstructions. Maddy, D., and Brew, J.S. Statistical Modelling of Quaternary Science Data. (1995). Quaternary Research Association, Cambridge. 161254.Google Scholar
Birks, H.J.B. Numerical tools in paleolimnology—progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.Google Scholar
Birks, H.J.B., and Gordon, A.D. The analysis of pollen stratigraphical data: zonation. Birks, H.J.B., and Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis. (1985). Academic Press, London. 4790.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., and ter Braak, C.J.F. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B327, (1990). 263278.Google Scholar
Bjune, A.E., and Birks, H.J.B. Holocene vegetation dynamics and inferred climate changes at Svanåvatnet, Mo i Rana, northern Norway. Boreas 37, (2008). 146156.Google Scholar
Bjune, A.E., Birks, H.J.B., and Seppä, H. Holocene vegetation and climate history on a continental-oceanic transect in northern Fennoscandia based on pollen and plant macrofossils. Boreas 33, (2004). 211223.Google Scholar
Boettger, T., Hiller, A., and Kremenetski, K. Mid-Holocene warming in the northwest Kola Peninsula, Russia: northern pinelimit movement and stable isotope evidence. The Holocene 13, (2003). 403408.Google Scholar
Bornette, G., Guerlesquin, M., and Henry, C.P. Are the Characeae able to indicate the origin of groundwater in former river channels?. Vegetatio 125, (1996). 207222.Google Scholar
Brodersen, K.P., and Lindegaard, C. Mass occurrence and sporadic distribution of Corynocera ambigua Zettersedt (Diptera, Chironomidae) in Danish lakes. Neo and palaeolimnological records. Journal of Paleolimnology 22, (1999). 4152.Google Scholar
Brodersen, K.P., and Quinlan, R. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25, (2006). 19952012.CrossRefGoogle Scholar
Brodersen, K.P., Pedersen, O., Lindegaard, C., and Hamburger, K. Chironomids (Diptera) and oxy-regulatory capacity: an experimental approach to paleolimnological interpretation. Limnology and Oceanography 49, (2004). 15491559.Google Scholar
Bronk Ramsey, C. Deposition models for chronological records. Quaternary Science Reviews 27, (2008). 4260.Google Scholar
Bronk Ramsey, C. OxCal 4.1. on-line version https://c14.arch.ox.ac.uk/oxcal/OxCal.html (2012). Google Scholar
Brooks, S.J., and Birks, H.J.B. Chironomid-inferred air temperatures from late-glacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20, (2001). 17231741.Google Scholar
Brooks, S.J., Langdon, P.G., and Heiri, O. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. (2007). Quaternary Research Association, London.Google Scholar
Cleveland, W.S., Grosse, E., and Shyu, W.M. Local regression models. Chambers, J.M., and Hastie, T.J. Statistical Models. (1993). Chapman & Hall, London. 309376.Google Scholar
Colman, S.M., Peck, J.A., Karabanov, E.B., Carter, S.J., Bradbury, J.P., King, J.W., and Williams, D.F. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378, (1995). 769771.Google Scholar
Eiríksson, J., Knudsen, K.L., Haflidason, H., and Heinemeier, J. Chronology of late Holocene climatic events in the northern North Atlantic based on AMS 14C dates and tephra markers from the volcano Hekla, Iceland. Journal of Quaternary Science 15, (2000). 573580.Google Scholar
Elshin, Yu.A., Kupriyanov, V.V. Resources of Surface Waters of the USSR: the Kola Peninsula vol. 1, (1970). Gidrometeoizdat Press, Leningrad.Google Scholar
Filatov, N.N., Pozdnyakov, D.V., Johannessen, O.M., Pettersson, L.H., and Bobylev, L.P. White Sea: Its Marine Environment and Ecosystem Dynamics Influenced by Global Change. (2005). Springer-Praxis, Chichester.Google Scholar
Gervais, B.R., and MacDonald, G.M. A 403-year record of July temperatures and treeline dynamics of Pinus sylvestris from the Kola Peninsula, Northwest Russia. Arctic, Antarctic, and Alpine Research 32, (2000). 295302.CrossRefGoogle Scholar
Gervias, B.R., MacDonald, G.M., Snyder, J.A., and Kremenetski, K.V. Pinus sylvestris treeline development and movement on the Kola Peninsula of Russia: pollen and stomate evidence. Journal of Ecology 90, (2002). 627638.Google Scholar
Glukhova, V.M., and Brodskaya, N.K. Ceratopogonidae. Biting midges. Tsalolikhin, S.J. Key to Freshwater Invertebrates of Russia and Adjacent Lands: Higher Insects: Diptera vol. 4, (1999). Zoological Institute RAS, St. Petersburg. 183209. (580–669) Google Scholar
Grimm, E.C. TGView Software. (2004). Illinois State Museum, Springfield.Google Scholar
Grönlund, T., and Kauppila, T. Holocene history of Lake Soldatskoje (Kola Peninsula, Russia) inferred from sedimentary diatom assemblages. Boreas 31, (2002). 273284.Google Scholar
Hammarlund, D., Barnekow, L., Birks, H.J.B., Buchardt, B., and Edwards, T.W.D. Holocene changes in atmospheric circulation recorded in the oxygen-isotope stratigraphy of lacustrine carbonates from northern Sweden. The Holocene 12, (2002). 339351.CrossRefGoogle Scholar
Hammarlund, D., Velle, G., Wolfe, B.B., Edward, T.W.D., Barnekow, L., Bergman, J., Holmgren, S., Lamme, S., Snowball, I., Wohlfarth, B., and Possnert, G. Palaeolimnological and sedimentary responses to Holocene forest retreat in the Scandes Mountain, west-central Sweden. The Holocene 14, (2004). 862876.Google Scholar
Heegaard, E., Lotter, A.F., and Birks, H.J.B. Aquatic biota and the detection of climate change: are there consistent aquatic ecotones?. Journal of Paleolimnology 35, (2006). 507518.Google Scholar
Heikkilä, M., and Seppä, H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quaternary Science Reviews 22, (2003). 541554.Google Scholar
Heiri, O., and Lotter, A.F. Effect of low counts sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, (2001). 343350.Google Scholar
Heiri, O., Lotter, A.F., Hausmann, S., and Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13, (2003). 477484.CrossRefGoogle Scholar
Hill, M.O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, (1973). 427432.Google Scholar
Hiller, A., Boettger, T., and Kremenetski, C. Mediaeval climatic warming recorded by radiocarbon dated alpine tree-line shift on the Kola Peninsula, Russia. The Holocene 11, (2001). 491497.Google Scholar
Ilyashuk, B.P., and Ilyashuk, E.A. Response of alpine chironomid communities (Lake Chuna, Kola Peninsula, northwestern Russia) to atmospheric contamination. Journal of Paleolimnology 25, (2001). 467475.Google Scholar
Ilyashuk, E.A., Ilyashuk, B.P., Hammarlund, D., and Larocque, I. Holocene climatic and environmental changes inferred from midge records (Diptera: Chironomidae, Chaoboridae, Ceratopogonidae) at Lake Berkut, southern Kola Peninsula, Russia. The Holocene 15, (2005). 897914.Google Scholar
Jones, V.J., Leng, M.J., Solovieva, N., Sloane, H.J., and Tarasov, P. Holocene climate of the Kola Peninsula; evidence from the oxygen isotope record of diatom silica. Quaternary Science Reviews 23, (2004). 833839.CrossRefGoogle Scholar
Jowsey, P.C. An improved peat sampler. New Phytologist 65, (1966). 245248.Google Scholar
Juggins, S. C2 User Guide. Software for Ecological and Palaeoecological Data Analysis and Visualisation. (2003). University of Newcastle, Newcastle.Google Scholar
Juggins, S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science?. Quaternary Science Reviews 64, (2013). 2032.Google Scholar
Kaushal, S., and Binford, M.W. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation in Lake Pleasant, Massachusetts, USA. Journal of Paleolimnology 22, (1999). 439442.CrossRefGoogle Scholar
Kobysheva, N.V. Scientific and Applied Guide to Climate of USSR. Part III, Multiyear Data. Issue 2, Murmansk Region (1988). Hydrometeorological Press, Leningrad.Google Scholar
Kononov, Yu.M., Friedrich, M., and Boettger, T. Regional summer temperature reconstruction in the Khibiny Low Mountains (Kola Peninsula, NW Russia) by means of tree-ring width during the last four centuries. Arctic, Antarctic, and Alpine Research 41, (2009). 460468.Google Scholar
Korhola, A., Weckström, J., Holmström, L., and Erästö, P. A quantitative Holocene climatic record from diatoms in Northern Fennoscandia. Quaternary Research 54, (2000). 284294.Google Scholar
Korhola, A., Vasko, K., Toivonen, H.T.T., and Olander, H. Holocene temperature changes in northern Fennoscandia reconstructed from chironomids using Bayesian modelling. Quaternary Science Reviews 21, (2002). 18411860.Google Scholar
Korhola, A., Tikkanen, M., and Weckström, J. Quantification of Holocene lake-level changes in Finnish Lapland using a cladocera-lake depth transfer function. Journal of Paleolimnology 34, (2005). 175190.Google Scholar
Kremenetski, C.V., Vaschalova, T., Goriachkin, S., Cherkinsky, A., and Sulerzhitski, L. Holocene pollen stratigraphy and bog development of the Kola Peninsula, Russia. Boreas 26, (1997). 91102.Google Scholar
Kremenetski, C.V., Vaschalova, T., and Sulerzhitsky, L. The Holocene vegetation history of the Khibiny Mountains: implications for the post-glacial expansion of spruce and alder on the Kola Peninsula, northwestern Russia. Journal of Quaternary Science 14, (1999). 2943.3.0.CO;2-1>CrossRefGoogle Scholar
Kremenetski, K.V., MacDonald, G.M., Gervais, B.R., Borisova, O.K., and Snyder, J.A. Holocene vegetation history and climate change on the northern Kola Peninsula, Russia: a case study from a small tundra lake. Quaternary International 122, (2004). 5768.CrossRefGoogle Scholar
Kufel, L., and Kufel, I. Chara beds acting as nutrient sinks in shallow lakes—a review. Aquatic Botany 72, (2002). 249260.Google Scholar
Lambert-Servien, E., Clemenceau, G., Gabory, O., Douillard, E., and Haury, J. Stoneworts (Characeae) and associated macrophyte species as indicators of water quality and human activities in the Pays-de-la-Loire region, France. Hydrobiologia 570, (2006). 107115.Google Scholar
Larocque, I., and Hall, R.I. Holocene temperature estimates andchironomid community composition in the Abisko Valley, northern Sweden. Quaternary Science Review 23, (2004). 24532465.Google Scholar
Larocque, I., Hall, R.I., and Grahn, E. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, (2001). 307322.Google Scholar
Larocque-Tobler, I. Reconstructing temperature at Egelsee, Switzerland, using North American and Swedish chironomid transfer functions: potential and pitfalls. Journal of Paleolimnology 44, (2010). 243251.Google Scholar
Larocque-Tobler, I., Heiri, O., and Wehrli, M. Late Glacial and Holocene temperature changes at Egelsee, Switzerland, reconstructed using subfossil chironomids. Journal of Paleolimnology 43, (2010). 649666.Google Scholar
Larsen, J., Bjune, A.E., and de la Riva Caballero, A. Holocene environmental and climate history of Trettetjørn, a low-alpine lake in western Norway, based on subfossil pollen, diatoms, oribatid mites, and plant macrofossils. Arctic, Antarctic, and Alpine Research 38, (2006). 571583.Google Scholar
Lebedeva, R.M., Kagan, L.Ya., and Ivanova, L.V. Biostratigraphical researches of Holocene at the Kola Peninsula. Nature and Economy of the North 15, (1987). 811.Google Scholar
Lotter, A.F., and Psenner, R. Global change impacts on mountain waters: lessons from the past to help define monitoring targets for the future. Lee, C., and Schaaf, T. Global Environmental and Social Monitoring. (2004). UNESCO, Paris. 102114.Google Scholar
Luoto, T.P., and Salonen, V.-P. Fossil midge larvae (Diptera: Chironomidae) as quantitative indicators of late-winter hypolimnetic oxygen in southern Finland: a calibration model, case studies and potentialities. Boreal Environment Research 15, (2010). 118.Google Scholar
MacDonald, G.M., Edwards, T.W.D., Moser, K.A., Pienitz, R., and Smol, J.P. Rapid response of treeline vegetation and lakes to past climate warming. Nature 361, (1993). 243246.CrossRefGoogle Scholar
MacDonald, G.M., Gervais, B.R., Snyder, J.A., Tarasov, G.A., and Borisova, O.K. Radiocarbon dated Pinus sylvestris L. wood beyond tree-line on the Kola Peninsula, Russia. The Holocene 10, (2000). 143147.Google Scholar
MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, A., Hammarlund, D., Szeicz, J.M., and Gataulin, V. Holocene treeline history and climate across northern Eurasia. Quaternary Research 53, (2000). 302311.Google Scholar
Magny, M., Bégeot, C., Guiot, J., and Peyron, O. Contrasting patterns of hydrological changes in Europe in response to Holocene climatic cooling phases. Quaternary Science Reviews 22, (2003). 15891596.CrossRefGoogle Scholar
Makarchenko, E.A., and Makarchenko, M.A. Chironomidae. Non-biting midges. Tsalolikhin, S.J. Key to Freshwater Invertebrates of Russia and Adjacent Lands: Higher Insects: Diptera vol. 4, (1999). Zoological Institute RAS, St. Petersburg. 210295. (670–857) Google Scholar
Miagkov, S.M. Prirodnye usloviya Khibinskogo uchebnogo polygona. (1986). Moscow University Press, Moscow. (in Russian) Google Scholar
Nagell, B. Resistance to anoxia of Chironomus plumosus and Chironomus anthracinus (Diptera) larvae. Holarctic Ecology 1, (1978). 333336.Google Scholar
Narchuk, E.P., Tumanov, D.V., Tsalolikhin, S.J. Key to Freshwater Invertebrates of Russia and Adjacent Lands: Arachnida and Hemimetabolous Insects vol. 3, (1997). Zoological Institute RAS, St. Petersburg. 439 Google Scholar
Nesje, A., and Dahl, S.O. The Greenland 8200 cal. yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. Journal of Quaternary Science 16, (2001). 155166.Google Scholar
Nesje, A., Matthews, J.A., Dahl, S.O., Berrisford, M.S., and Andersson, C. Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region. The Holocene 11, (2001). 267280.CrossRefGoogle Scholar
Nesje, A., Bakke, J., Dahl, S.O., Lie, Ø., and Matthews, J.A. Norweigan mountain glaciers in the past, present and future. Global and Planetary Change 60, (2008). 1027.Google Scholar
Pankratova, V.Ya Larvae and pupae of non-biting midges of the subfamily Orthocladiinae (Diptera, Chironomidae = Tendipedidae) of the USSR fauna. Opredeliteli Fauny SSSR 102, (1970). 1343. (in Russian) Google Scholar
Pienitz, R., Douglas, M.S.V., and Smol, J.P. Long-Term Environmental Change in Arctic and Antarctic Lakes. Developments in Paleoenvironmental Research vol. 8, (2004). Springer, Dordrecht/Berlin.Google Scholar
Quinlan, R., and Smol, J.P. Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology 46, (2001). 15291551.Google Scholar
R Development Core Team, R: a Language and Environment for Statistical Computing. (2012). R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Renberg, I., and Hansson, H. The HTH sediment corer. Journal of Paleolimnology 40, (2008). 655659.Google Scholar
Rohling, E.J., and Pälike, H. Centennialscale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, (2005). 975979.Google Scholar
Rohling, E.J., Mayewski, P.A., Hayes, A., Abu-Zied, R.H., and Casford, J.S.L. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 573592.Google Scholar
Rosén, P., Segerström, U., Eriksson, L., Renberg, I., and Birks, H.J.B. Holocene climate change reconstructed from diatoms, chironomids, pollen and near-infrared spectroscopy at an alpine lake (Sjuodjijaure) in northern Sweden. The Holocene 11, (2001). 551562.CrossRefGoogle Scholar
Sæther, O.A. Revision of Hydrobaenus, Trissocladius, Zalutschia, Paratrissocladius, and some related genera (Diptera: Chironomidae). Bulletin of the Fisheries Research Board of Canada 195, (1976). 1287.Google Scholar
Sæther, O.A. Chironomid communities as water quality indicators. Holarctic Ecology 2, (1979). 6574.Google Scholar
Sarmaja-Korjonen, K., Nyman, M., Kultti, S., and Väliranta, M. Palaeolimnological development of Lake Njargajavri, northern Finnish Lapland, in a changing Holocene climate and environment. Journal of Paleolimnology 35, (2006). 6581.Google Scholar
Seniczak, A., Solhøy, T., Seniczak, S., and de la Riva Cabellero, A. Species composition and abundance of the oribatid fauna (Acari, Oribatida) at two lakes in the Fløyen area, Bergen, Norway. Biological Letters 47, (2010). 1119.Google Scholar
Seppä, H., and Birks, H.J.B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstruction. The Holocene 11, (2001). 527539.Google Scholar
Seppä, H., and Birks, H.J.B. Holocene climate reconstruction from the Fennoscandian tree-line area based on pollen data from Toskaljarvi. Quaternary Research 57, (2002). 191199.Google Scholar
Seppä, H., Birks, H.J.B., Giesecke, T., Hammarlund, D., Alenius, T., Antonsson, K., Bjune, A.E., Heikkilä, M., MacDonald, G.M., Ojala, A.E.K., Telford, R.J., and Veski, S. Spatial structure of the 8200 cal yr BP event in Northern Europe. Climate of the Past 3, (2007). 225236.Google Scholar
Seppä, H., MacDonald, G., Birks, H.J.B., Gervais, B.R., and Snyder, J.A. Late-Quaternary summer temperature changes in the northern-European. Quaternary Research 69, (2008). 404412.CrossRefGoogle Scholar
Seppä, H., Bjune, A.E., Telford, R.J., Birks, H.J.B., and Veski, S. Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past 5, (2009). 523535.Google Scholar
Smol, J.P., and Cumming, B.F. Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology 36, (2000). 9861011.Google Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.-A., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, E., Siitonen, S., Solovieva, N., and Weckström, J. Climate-driven regime shifts in the biological communities of arctic lakes. PNAS 102, (2005). 43974402.Google Scholar
Snowball, I., and Sandgren, P. Lake sediment studies of Holocene glacial activity in the Kårsa valley, northern Sweden: contrasts in interpretation. The Holocene 6, (1996). 367372.Google Scholar
Snyder, J.A., MacDonald, G.M., Forman, S.L., Tarasov, G.A., and Node, G.A. Postglacial climate and vegetation history, north-central Kola Peninsula, Russia: pollen and diatom records from Lake Yarnoshnoe-3. Boreas 29, (2000). 261271.CrossRefGoogle Scholar
Solhøy, I.W., and Solhøy, T. The fossil oribatid mite fauna (Acari: Oribatida) in late-glacial and early-Holocene sediments in Kråkenes Lake, western Norway. Journal of Paleolimnology 23, (2000). 3547.Google Scholar
Solovieva, N., and Jones, V. A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. Journal of Quaternary Science 17, (2002). 303318.Google Scholar
Solovieva, N., Tarasov, P.E., and MacDonald, G. Quantitative reconstruction of Holocene climate from the Chuna Lake pollen record, Kola Peninsula, northwest Russia. The Holocene 15, (2005). 141148.CrossRefGoogle Scholar
St. Amour, N.A., Hammarlund, D., Edwards, T.W.D., and Wolfe, B.B. New insights into Holocene atmospheric circulation dynamics in central Scandinavia inferred from oxygen-isotope records of lake sediment cellulose. Boreas 39, (2010). 770782.Google Scholar
Szadziewski, R., Krzywiński, J., and Giłka, W. Diptera Ceratopogonidae, biting midges. Nilsson, A.N. The Aquatic Insects of North Europe vol. 2, (1997). 243263.Google Scholar
Talbot, M.R. Nitrogen isotopes in palaeolimnology. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods vol. 2, (2001). Kluwer Academic Publisher, Dordrecht. 401439.Google Scholar
Telford, R.J. Package ‘palaeoSig’: Significance Tests of Quantitative Palaeoenvironmental Reconstructions. (2012). Google Scholar
Telford, R.J., and Birks, H.J.B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quaternary Science Reviews 30, (2011). 12721278.Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User's Quite: Software for Canonical Community Ordination (version 4.5). (2002). Microcomputer Power, New York.Google Scholar
Terziev, F.S. Guide to Climate of USSR. Issue 2, Murmansk Region. Part II, Temperature of Air and Soil (1965). Hydrometeorological Press, Leningrad.Google Scholar
Thompson, R., Ventura, M., and Camarero, L. On the climate and weather of mountain and sub-arctic lakes in Europe and their susceptibility to future climate change. Freshwater Biology 54, (2009). 24332451.Google Scholar
Väliranta, M., Weckström, J., Siitonen, S., Seppä, H., Alkio, J., Juutinen, S., and Tuittila, E.-S. Holocene aquatic ecosystem change in the boreal vegetation zone of northern Finland. Journal of Paleolimnology 45, (2011). 339352.Google Scholar
van de Weyer, K., Schmidt, C., Kreimeier, B., and Wassong, D. Bestimmungsschlüssel für die aquatischen Makrophyten (Gefäßpflanzen, Armleuchteralgen und Moose) in Deutschland. Version 1.1. (2007). (20. Mai 2007) Google Scholar
van Geel, B., Buurman, J., and Waterbolk, H.T. Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, (1996). 451460.Google Scholar
Vaschalova, T.V. Environmental history of Khibiny in Holocene. Miagkov, S.M. Prirodnye usloviya Khibinskogo uchebnogo polygona. (1986). Moscow University Press, Moscow. 2225. (in Russian) Google Scholar
Walker, I.R. Midges: Chironomidae and related Diptera. Smol, J.P., Birks, H.J.B., Last, W.M. Tracking Environmental Change Using Lake Sediments: Zoological Indicators vol. 4, (2001). Kluwer Academic Publisher, Dordrecht. 4366.Google Scholar
Wanner, H., Beer, J., Bütikofer, J., Crowley, T.J., Cubasch, U., Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., and Widmann, M. Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, (2008). 17911828.Google Scholar
Weckström, J., Seppä, H., and Korhola, A. Climatic influence on peatland formation and lateral expansion dynamics in subarctic Fennoscandia. Boreas 39, (2010). 761769.Google Scholar
Weigmann, G., (2006). Hornmilben (Oribatida). in: Dahl, F. (Begr.), Die Tierwelt Deutschlands und der angrenzenden Meeresteile. Bd. 76, . Goecke & Evers, Keltern., 1520. S.Google Scholar
Wiederholm, T. Chironomidae of the Holarctic Region, Keys and Diagnoses. Part 1—Larvae. Entomologica Scandinavica, Supplement 19, (1983). 1457.Google Scholar
Wolfe, B.B., Edwards, T.W.D., Jiang, H., MacDonald, G.M., Gervais, B.R., and Snyder, J.A. Effect of varying oceanicity on early- to mid-Holocene palaeohydrology, Kola Peninsula, Russia: isotopic evidence from treeline lakes. The Holocene 13, (2003). 153160.Google Scholar
Zillén, L., and Snowball, I. Complexity of the 8 ka climate event in Sweden recorded by varved lake sediments. Boreas 38, (2009). 493503.Google Scholar