Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T21:52:59.333Z Has data issue: false hasContentIssue false

Geophysical sediment properties of a late Pleistocene loess–paleosol sequence, Chenarli, northeastern Iran

Published online by Cambridge University Press:  11 April 2023

Amin Ghafarpour
Affiliation:
Department of Soil Sciences, Loess Research Center, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Farhad Khormali*
Affiliation:
Department of Soil Sciences, Loess Research Center, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Hossein Tazikeh
Affiliation:
Department of Soil Sciences, Loess Research Center, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
Martin Kehl
Affiliation:
Institute of Geography, University of Cologne, Albertus-Magnus-Platz, 50923, Cologne, Germany
Christian Rolf
Affiliation:
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655, Hanover, Germany
Manfred Frechen
Affiliation:
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655, Hanover, Germany
Christian Zeeden
Affiliation:
Leibniz Institute for Applied Geophysics (LIAG), Stilleweg 2, 30655, Hanover, Germany
*
*Corresponding author at: Department of Soil Sciences, Loess Research Center, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail address: fkhormali@gau.ac.ir; khormali@yahoo.com (F. Khormali)

Abstract

We present stratigraphic, magnetic, diffuse reflectance spectrophotometric analyses, and chronologic data for the Chenarli loess–paleosol sequence in northeastern Iran. Eight loess units (LU) are identified, described, and constrained in time based on relative stratigraphy and luminescence dating from >130 ± 9.1 ka to ~9.8 ± 0.7 ka. Our data indicate that pedogenic magnetite/maghemite formation gives rise to magnetic enhancement in modern soil and paleosols. The top of LU 7 is demarcated by the well-developed last interglacial soil in which magnetic depletion occurred. We infer that magnetic depletion in this paleosol was produced by reducing conditions in a seasonally waterlogged soil during a warm and wet phase within Marine Isotope Stage (MIS) 5e. Units LU 6 to 1 record several episodes of dust accumulation and soil formation during the last glacial and Holocene. Increased dust accumulation rates occurred during middle-late MIS 3 and lasted into the late MIS 2, with a peak during the last glacial maximum (LU 2). These findings could be applicable to understanding magnetic enhancement/dissolution mechanism in the loess–paleosol sequences in study area. We infer paleoenvironmental changes in northeastern Iran relative to northern Iran, Eurasia, and China.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmed, I.A., Maher, B.A., 2018. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proceedings of the National Academy of Sciences USA 115, 17361741.10.1073/pnas.1719186115CrossRefGoogle ScholarPubMed
Antoine, P., Rousseau, D.D., Moine, O., Kunesch, S., Hatte, C., Lang, A., Tissoux, H., Zöller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 29552973.10.1016/j.quascirev.2009.08.001CrossRefGoogle Scholar
Balsam, W., Ji, J., Chen, J., 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters 223, 335348.CrossRefGoogle Scholar
Balsam, W.L., Damuth, J.E., 2000. Further investigations of ship-board vs. shore-based spectral data: implications for interpreting Leg 164 sediment composition. In: Paull, C.K., Matsumoto, R., Wallace, P., Dillon, W.P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 164. Ocean Drilling Program, College Station, TX, p. 313324.Google Scholar
Balsam, W.L., Deaton, B.C., 1991. Sediment dispersal in the Atlantic Ocean: evaluation by visible light spectra. Reviews in Aquatic Sciences 4, 411447.Google Scholar
Begét, J.E., 2001. Continuous Late Quaternary proxy climate records from loess in Beringia. Quaternary Science Reviews 20, 499507.10.1016/S0277-3791(00)00102-5CrossRefGoogle Scholar
Beuselinck, L., Govers, G., Poesen, J., Degraer, G., Froyen, L., 1998. Grain-size analysis by laser diffractometry: comparison with the sieve pipette method. Catena 32, 193208.10.1016/S0341-8162(98)00051-4CrossRefGoogle Scholar
Bilardello, D., Banerjee, S.K., Volk, M.W., Soltis, J.A., Penn, R.L., 2020. Simulation of natural iron oxide alteration in soil: conversion of synthetic ferrihydrite to hematite without artificial dopants, observed with magnetic methods. Geochemistry, Geophysics, Geosystems 20, e2020GC009037.Google Scholar
Blundell, A., Dearing, J.A., Boyle, J.F., Hannam, J.A., 2009. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Science Reviews 95, 158188.CrossRefGoogle Scholar
Bradák, B., Seto, Y., Stevens, T., Újvári, G., Fehér, K., Költringer, C., 2021. Magnetic susceptibility in the European Loess Belt: new and existing models of magnetic enhancement in loess. Palaeogeography, Palaeoclimatology, Palaeoecology 569, 110329.10.1016/j.palaeo.2021.110329CrossRefGoogle Scholar
Catt, J.A., 1991. Soils as indicators of Quaternary climatic change in mid-latitude regions. Geoderma 51, 167187.CrossRefGoogle Scholar
Chen, F.H., Jia, J., Chen, J.H., Li, G.Q., Zhang, X.J., Xie, H.C., Xia, D.S., Huang, W., 2016. Persistent Holocene wetting trend with the wettest Late-Holocene in the arid central Asia evidenced by loess–palaeosol sequence in Xinjiang, China. Quaternary Science Reviews 146, 134146.CrossRefGoogle Scholar
Chepalyga, A.L., 2007. The late glacial great flood in the Ponto-Caspian basin. In: Yanko-Hombach, V.V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement. Springer, New York, pp. 119148.CrossRefGoogle Scholar
Chlachula, J., 2003. The Siberian loess record and its significance for reconstruction of Pleistocene climate change in north-central Asia. Quaternary Science Reviews 22, 18791906.10.1016/S0277-3791(03)00182-3CrossRefGoogle Scholar
Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, Weinheim.CrossRefGoogle Scholar
Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., Loveland, P.J., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, 728734.CrossRefGoogle Scholar
Deaton, B.C., Balsam, W.L., 1991. Visible spectroscopy: a rapid method for determining hematite and goethite concentration in geological materials. Journal of Sedimentary Petrology 61, 628632.10.1306/D4267794-2B26-11D7-8648000102C1865DCrossRefGoogle Scholar
Deng, C.L., Zhu, R.X., Jackson, M.J., Verosub, K.L., Singer, M.J., 2001. Variability of the temperature-dependent susceptibility of the Holocene eolian deposits in the Chinese loess plateau: a pedogenesis indicator. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 873878.10.1016/S1464-1895(01)00135-1CrossRefGoogle Scholar
Ding, Z.L., Ranov, V., Yang, S.L., Finaev, A., Han, J.M., Wang, G.A., 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200, 387400.10.1016/S0012-821X(02)00637-4CrossRefGoogle Scholar
Dodonov, A.E., Sadchikova, T.A., Sedov, S.N., Simakova, A.N., Zhou, L.P., 2006. Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, Southern Tajikistan. Quaternary International 152–153, 4858.CrossRefGoogle Scholar
Eckmeier, E., Egli, M., Schmidt, M.W.I., Schlumpf, N., Nӧtzli, M., Minikus-Stary, N., Hagedorn, F., 2013. Preservation of fire-derived carbon compounds and sorptive stabilisation promote the accumulation of organic matter in black soils of the Southern Alps. Geoderma 159, 147155.CrossRefGoogle Scholar
Evans, M.E., Heller, F., 2003. Environmental Magnetism; Principles and Applications of Enviromagnetics. Academic Press, San Diego, CA.Google Scholar
Fischer, P., Hambach, U., Klasen, N., Schulte, P., Zeeden, C., Steininger, F., Lehmkuhl, F., Gerlach, R., Radtke, U., 2019. Landscape instability at the end of MIS 3 in western Central Europe: evidence from a multi proxy study on a loess-palaeosol-sequence from the eastern Lower Rhine Embayment, Germany. Quaternary International 502, 119136.CrossRefGoogle Scholar
Fitzsimmons, K.E., Hambach, U., 2014. Loess accumulation during the last glacial maximum: evidence from Urluia, Southeastern Romania. Quaternary International 334–335, 7485.CrossRefGoogle Scholar
Fitzsimmons, K.E., Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41, 104118.10.1016/j.quascirev.2012.03.002CrossRefGoogle Scholar
Fitzsimmons, K.E., Sprafke, T., Zielhofer, C., Günter, C., Deom, J.M., Sala, R., Iovita, R., 2018. Loess accumulation in the Tian Shan piedmont: implications for palaeoenvironmental change in arid Central Asia. Quaternary International 469, 3043.10.1016/j.quaint.2016.07.041CrossRefGoogle Scholar
Frechen, M., Kehl, M., Rolf, C., Sarvati, R., Skowronek, A., 2009. Loess chronology of the Caspian Lowland in Northern Iran. Quaternary International 198, 220233.CrossRefGoogle Scholar
Geiss, C.E., 2014. Does timing or location matter? The influence of site variability and short-term variations in precipitation on magnetic enhancement in loessic soils. Geoderma 230–231, 280287.10.1016/j.geoderma.2014.03.020CrossRefGoogle Scholar
Geiss, C.E., Egli, R., Zanner, C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. Journal of Geophysical Research. Solid Earth 113, 115.Google Scholar
Geiss, C.E., Zanner, C.W., 2006. How abundant is pedogenic magnetite? Abundance and grain size estimates for loessic soil based on rock magnetic analyses. Journal of Geophysical Research 111, 119.10.1029/2006JB004564CrossRefGoogle Scholar
Geiss, C.E., Zanner, C.W., 2007. Sediment magnetic signature of climate in modern loessic soils from the Great Plains. Quaternary International 162–163, 97110.CrossRefGoogle Scholar
Ghafarpour, A., Khormali, F., Balsam, W., Forman, S.L., Cheng, L., Song, Y., 2021a. The formation of iron oxides and magnetic enhancement mechanisms in northern Iranian loess-paleosol sequences: evidence from diffuse reflectance spectrophotometry and temperature dependence of magnetic susceptibility. Quaternary International 589, 6882.CrossRefGoogle Scholar
Ghafarpour, A., Khormali, F., Balsam, W., Karimi, A., Ayoubi, S., 2016. Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, northern Iran. Quaternary Research 86, 95109.CrossRefGoogle Scholar
Ghafarpour, A., Khormali, F., Forman, S. L., 2017. The OSL chronology of the loess-paleosol sequence Mobarakabad, northern Iran. In LoessFest 2017, Gorgan, Iran, 8–12 October, pp. 6869.Google Scholar
Ghafarpour, A., Khormali, F., Meng, X., Tazikeh, H., 2021b. Late Pleistocene climate and dust source from the Mobarakabad loess–paleosol sequence, northern foothills of the Alborz Mountains. Frontiers in Earth Science 9, 116.CrossRefGoogle Scholar
Guo, B., Zhu, R.X., Roberts, A.P., Florindo, F., 2001. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol sequences. Geophysical Research Letters 28, 42594262.CrossRefGoogle Scholar
Han, Y., Liu, X., Zhao, G., Zhang, Z., , B., Chen, Q., 2020. Magnetic characteristics of Guangshan loess from northern piedmont of Dabie Mountains, east-central China. Geophysical Journal International 222, 12131223.CrossRefGoogle Scholar
He, T., Liu, L., Chen, Y., Sheng, X., Ji, J., Chen, J., 2018. Glacial–interglacial change in chlorite concentration from the Lingtai Section in the Chinese Loess Plateau over the past 1.2 Ma and its possible forcing mechanisms. Quaternary Research 89, 511519.CrossRefGoogle Scholar
Heller, F., Liu, T.S., 1984. Magnetism of Chinese loess deposits. Geophysical Journal International 77, 125141.10.1111/j.1365-246X.1984.tb01928.xCrossRefGoogle Scholar
Heslop, D., 2009. On the statistical analysis of the rock magnetic S-ratio. Geophysical Journal International 178, 159161.CrossRefGoogle Scholar
Hlavatskyi, D., Bakhmutov, V., 2021. Early–Middle Pleistocene magnetostratigraphic and rock magnetic records of the Dolynske Section (lower Danube, Ukraine) and their application to the correlation of loess–palaeosol sequences in eastern and south-eastern Europe. Quaternary 4(4), 43.CrossRefGoogle Scholar
Hlavatskyi, D.V., Bakhmutov, V.G., 2020. Magnetostratigraphy and magnetic susceptibility of the best developed Pleistocene loess-palaeosol sequences of Ukraine: implications for correlation and proposed chronostratigraphic models. Geological Quarterly, 64. https://doi.org/10.7306/gq.1544CrossRefGoogle Scholar
Hrouda, F., 1994. A technique for the measurements of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 Kappabridge. Geophysical Journal International 118, 604612.CrossRefGoogle Scholar
Hu, P., Jiang, Z., Liu, Q., Heslop, D., Roberts, A. P., Torrent, J., Barrón, V., 2016. Estimating the concentration of aluminum-substituted hematite and goethite using diffuse reflectance spectrometry and rock magnetism: feasibility and limitations. Journal of Geophysical Research: Solid Earth 121, 41804194.CrossRefGoogle Scholar
Hu, P., Liu, Q., Heslop, D., Roberts, A.P., Jin, C., 2015. Soil moisture balance and magnetic enhancement in loess–paleosol sequences from the Tibetan Plateau and Chinese Loess Plateau. Earth and Planetary Science Letters 409, 120132.10.1016/j.epsl.2014.10.035CrossRefGoogle Scholar
Hu, P.X., Liu, Q.S., Torrent, J., Barrón, V., Jin, C., 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: implications for pedogenesis. Earth and Planetary Science Letters 369–370, 271283.CrossRefGoogle Scholar
Hu, X.F., Du, Y., Guan, C.L., Xue, Y., Zhang, G.L., 2014. Color variations of the Quaternary Red Clay in southern China and its paleoclimatic implications. Sedimentary Geology 303, 1525.CrossRefGoogle Scholar
Huntley, D.J., Lamothe, M., 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Sciences 38, 10931106.CrossRefGoogle Scholar
Hyodo, M., Sano, T., Matsumoto, M., Seto, Y., Bradák, B., Suzuki, K., Fukuda, J.I., Shi, M., Yang, T., 2020. Nanosized authigenic magnetite and hematite particles in mature-paleosol phyllosilicates: new evidence for a magnetic enhancement mechanism in loess sequences of China. Journal of Geophysical Research: Solid Earth 125, e2019JB018705.Google Scholar
Ji, J., Balsam, W., Chen, J., Liu, L., 2002. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequence by diffuse reflectance spectroscopy. Clays and Clay Minerals 50, 208216.10.1346/000986002760832801CrossRefGoogle Scholar
Jiang, Z., Liu, Q., Roberts, A.P., Dekkers, M.J., Barrón, V., Torrent, J., Li, S., 2022. The magnetic and color reflectance properties of hematite: from Earth to Mars. Reviews of Geophysics 60, e2020RG000698.10.1029/2020RG000698CrossRefGoogle Scholar
Judd, D.B., Wyszecki, G., 1975. Color in Business, Science, and Industry. Wiley, New York, p. 553.Google Scholar
Kang, S., Roberts, H.M., Wang, X., An, Z., Wang, M., 2015. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the Last Glacial Maximum. Aeolian Research 19 (Part B), 251258.CrossRefGoogle Scholar
Karimi, A., Frechen, M., Khademi, H., Kehl, M., Jalalian, A., 2011. Chronostratigraphy of loess deposits in northeast Iran. Quaternary International 234, 124132.CrossRefGoogle Scholar
Karimi, A., Khademi, H., Ayoubi, S., 2013. Magnetic susceptibility and morphological characteristics of a loess–paleosol sequence in northeastern Iran. Catena 101, 5660.10.1016/j.catena.2012.09.015CrossRefGoogle Scholar
Karimi, A., Khademi, H., Kehl, M., Jalalian, A., 2009. Distribution, lithology and provenance of peridesert loess deposits in northeastern Iran. Geoderma 148, 241250.CrossRefGoogle Scholar
Kehl, M., 2010. Quaternary Loesses, Loess-Like Sediments, Soils and Climate Change in Iran. Relief, Boden, Paläoklima 24. Gebr. Borntraeger Science Publishers, Stuttgart, p. 208.Google Scholar
Kehl, M., Vlaminck, S., Köhler, T., Laag, C., Rolf, C., Tsukamoto, S., Frechen, M., Sumita, M., Schmincke, H.U., Khormali, F., 2021. Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands—new insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quaternary Science Reviews 253, 106774.CrossRefGoogle Scholar
Khormali, F., Kehl, M., 2011. Micromorphology and development of loess-derived surface and buried soils along a precipitation gradient in northern Iran. Quaternary International 234, 109123.CrossRefGoogle Scholar
Khormali, F., Shahriari, A., Ghafarpour, A., Kehl, M., Lehndorff, E., Frechen, M., 2020. Pedogenic carbonates archive modern and past precipitation change—a transect study from soils and loess-paleosol sequences from northern Iran. Quaternary International 552, 7990.CrossRefGoogle Scholar
Költringer, C., Stevens, T., Bradák, B., Almqvist, B., Kurbanov, R., Snowball, I., Yarovaya, S., 2021. Enviromagnetic study of Late Quaternary environmental evolution in Lower Volga loess sequences, Russia. Quaternary Research 103, 4973.10.1017/qua.2020.73CrossRefGoogle Scholar
Költringer, C., Stevens, T., Lindner, M., Baykal, Y., Ghafarpour, A., Khormali, F., Taratunina, N., Kurbanov, R., 2022. Quaternary sediment sources and loess transport pathways in the Black Sea–Caspian Sea region identified by detrital zircon U-Pb geochronology. Global and Planetary Change 209, 103736.CrossRefGoogle Scholar
Krijgsman, W., Tesakov, A., Yanina, T., Lazarev, S., Danukalova, G., Van Baak, C.G.C., Agustí, J., et al., 2019. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth-Science Reviews 188, 140.CrossRefGoogle Scholar
Kukla, G., An, Z., 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 203225.10.1016/0031-0182(89)90143-0CrossRefGoogle Scholar
Laag, C., Hambach, U., Zeeden, C., Lagroix, F., Guyodo, Y., Veres, D., Jovanović, M., Marković, S., 2021. A detailed paleoclimate proxy record for the middle Danube Basin over the last 430 kyr: a rock magnetic and colorimetric study of the Zemun loess–paleosol sequence. Frontiers in Earth Science 9, 600086.CrossRefGoogle Scholar
Lauer, T., Frechen, M., Vlaminck, S., Kehl, M., Lehndorff, E., Shahriari, A., Khormali, F., 2017a. Luminescence-chronology of the loess palaeosol sequence Toshan, northern Iran—a highly resolved climate archive for the last glacial–interglacial cycle. Quaternary International 429, 312.CrossRefGoogle Scholar
Lauer, T., Vlaminck, S., Frechen, M., Rolf, C., Kehl, M., Sharifi, J., Lehndorff, E., Khormali, F., 2017b. The Agh Band loess-palaeosol sequence e a terrestrial archive for climatic shifts during the last and penultimate glacial-interglacial cycles in a semiarid region in northern Iran. Quaternary International 429, 13e30.Google Scholar
Leroy, S.A.G., Kakroodi, A.A., Kroonenberg, S., Lahijani, H.K., Alimohammadian, A., Nigarov, A., 2013. Holocene vegetation history and sea level changes in the SE corner of the Caspian Sea: relevance to SW Asia climate. Quaternary Science Reviews 70, 2847.CrossRefGoogle Scholar
Leroy, S.A.G., Lahijani, H.A.K., Crétaux, J.-F., Aladin, N.V., Plotnikov, I.S., 2020. Past and current changes in the largest lake of the world: the Caspian Sea. In: Mischke, S. (Ed.), Large Asian Lakes in a Changing World. Natural State and Human Impact. Springer, Cham, Switzerland, pp. 65107. DOI: 10.1007/978-3-030-42254-7_3CrossRefGoogle Scholar
Liu, Q., Roberts, A.P., Torrent, J., Horng, C.-S., Larrasoaña, J.C., 2007. What do the HIRM and S-ratio really measure in environmental magnetism? Geochemistry, Geophysics, Geosystems 8, Q09011.10.1029/2007GC001717CrossRefGoogle Scholar
Machalett, B., Oches, E.A., Zӧller, L., Hambach, U., Mavlyanova, N.G., Markovic, S., 2008. Aeolian dust dynamics in central Asia during the Pleistocene: driven by the long-term migration, seasonality, and permanency of the Asiatic polar front. Geochemistry, Geophysics, Geosystems 9, 122.CrossRefGoogle Scholar
Maher, B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 137, 2554.CrossRefGoogle Scholar
Maher, B.A., MengYu, H., Roberts, H.M., Wintle, A.G., 2003. Holocene loess accumulation and soil development at the western edge of the Chinese Loess Plateau. Implications for magnetic proxies of palaeorainfall. Quaternary Science Reviews 22, 445.CrossRefGoogle Scholar
Markovic, S.B., Bokhorst, M.P., Vandenberghe, J., McCoy, W.D., Oches, E.A., Hambach, U., Gaudenyi, T., et al., B., 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23, 7384.10.1002/jqs.1124CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chrono-stratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
Maxbauer, D.P., Feinberg, J.M., Fox, D.L., 2016. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth-Science Reviews 155, 2848.CrossRefGoogle Scholar
Muhs, D.R., 2007. Loess deposits, origins, and properties. In: Elias, S. (Ed.), The Encyclopedia of Quaternary Sciences. Elsevier, Amsterdam, pp. 14051418.CrossRefGoogle Scholar
Najafi, H., Karimi, A., Haghnia, G.H., Khormali, F., Ayoubi, S., Tazikeh, H., 2019. Paleopedology and magnetic properties of Sari loess-paleosol sequence in Caspian lowland, northern Iran. Journal of Mountain Science 16, 15591570.CrossRefGoogle Scholar
Oches, E.A., Banerjee, S.K., 1996. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Studia Geophysica et Geodaetica 40, 287300.10.1007/BF02300744CrossRefGoogle Scholar
Orgeira, M.J., Egli, R., Compagnucci, R.H., 2011. A quantitative model of magnetic enhancement in loessic soils. In: Petrovsky, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (Eds.), Magnetic Earth's Interior. Springer, Dordrecht, Netherlands, pp. 361397.10.1007/978-94-007-0323-0_25CrossRefGoogle Scholar
Pecsi, M., 1995. Loess stratigraphy and Quaternary climatic change. In: Pécsi, M., Schweitzer, F. (Eds.), Concept of Loess, Loess-Paleosol Stratigraphy. Loess in Form 3. Geographical Research Institute, Hungarian Academy of Sciences, Budapest, pp. 2330.Google Scholar
Peng, S., Hao, Q., Oldfield, F., Guo, Z., 2014. Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits. Catena 117, 4349.CrossRefGoogle Scholar
Pourmasoumi, M., Khormali, F., Ayoubi, S., Kehl, M., Kiani, F., 2019. Development and magnetic properties of loess-derived forest soils along a precipitation gradient in northern Iran. Journal of Mountain Science 16, 18481868.CrossRefGoogle Scholar
Quinton, E.E., Dahms, D.E., Geiss, C.E., 2012. Magnetic analyses of soils from the Wind River Range, Wyoming, constrain rates and pathways of magnetic enhancement for soils from semiarid climates. Geochemistry Geophysics Geosystems 12, 116.Google Scholar
Rahimzadeh, N., Khormali, F., Gribenski, N., Tsukamoto, S., Kehl, M., Pint, A., Kiani, F., Frechen, M., 2019. Timing and development of sand dunes in the Golestan Province, northern Iran—implications for the Late-Pleistocene history of the Caspian Sea. Aeolian Research 41, 100538.CrossRefGoogle Scholar
Ramsey, C.B., 2017. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 18091833.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rethemeyer, J., Fülöp, R.H., Höfle, S., Wacker, L., Heinze, S., Hajdas, I., Patt, U., König, S., Stapper, B., Dewald, A., 2013. Status report on sample preparation facilities for 14C analysis at the new Cologne AMS center. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 168172.CrossRefGoogle Scholar
Roberts, A.P., 2015. Magnetic mineral diagenesis. Earth-Science Reviews, 151, 147.CrossRefGoogle Scholar
Roberts, A.P., Zhao, X., Heslop, D., Abrajevitch, A., Chen, Y.H., Hu, P., Jiang, Z., Liu, Q., Pillans, B.J., 2020. Hematite (α-Fe2O3) quantification in sedimentary magnetism: Limitations of existing proxies and ways forward. Geoscience Letters 7, 8.CrossRefGoogle Scholar
Robinson, S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by magnetic mineral measurements. Physics of the Earth and Planetary Interiors 42, 2247.CrossRefGoogle Scholar
Rousseau, D.D., Antoine, P., Boers, N., Lagroix, F., Ghil, M., Lomax, J., Fuchs, M., et al., 2020. Dansgaard–Oeschger-like events of the penultimate climate cycle: the loess point of view. Climate of the Past 16, 713727.CrossRefGoogle Scholar
Rousseau, D.D., Antoine, P., Gerasimenko, N., Sima, A., Fuchs, M., Hatte, C., Moine, O., Zoeller, L., 2011. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Climate of the Past 7, 221234.CrossRefGoogle Scholar
Rousseau, D.D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F., Taylor, S., Antoine, P., 2017. (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records e a paleosol perspective. Quaternary Science Reviews 169, 99113.CrossRefGoogle Scholar
Salvador, A., 1994. International Stratigraphic Guide. 2nd ed. Geological Society of America, Boulder, CO.Google Scholar
Sandeep, K., Shankar, R., Warrier, A.K., Balsam, W., 2017. Diffuse reflectance spectroscopy of a tropical southern Indian lake sediment core: a window to environmental change. Episodes 40, 4756.CrossRefGoogle Scholar
Schaetzl, R.J., Bettis, E.A., Crouvi, O., Fitzsimmons, K.E., Grimley, D.A., Hambach, U., Lehmkuhl, F., et al., 2018. Approaches and challenges to the study of loess—introduction to the LoessFest special issue. Quaternary Research 89, 563618.CrossRefGoogle Scholar
Scheinost, A.C., Schwertmann, U., 1999. Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal 63, 14631471.CrossRefGoogle Scholar
Sharifigarmdareh, J., Khormali, F., Scheidt, S., Rolf, C., Kehl, M., Frechen, M., 2020. Investigating soil magnetic properties with pedogenic variation along a precipitation gradient in loess-derived soils of the Golestan province, northern Iran. Quaternary International 552, 100110.CrossRefGoogle Scholar
Singer, M.J., Verosub, K.L., Fine, P., TenPas, J., 1996. A conceptual model for the enhancement of magnetic susceptibility in soils. Quaternary International 34, 243248.CrossRefGoogle Scholar
Smith, B.J., Wright, J.S., Whalley, W.B., 2002. Sources of non-glacial, loess-size quartz silt and the origins of “desert loess.” Earth-Science Reviews 59, 126.CrossRefGoogle Scholar
Soil Survey Staff, 2014. Keys to Soil Taxonomy. U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, DC.Google Scholar
Song, Y., Li, Y., Cheng, L., Zong, X., Kang, S., Ghafarpour, A., Li, X., et al., 2021. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeography, Palaeoclimatology, Palaeoecology 567, 110279.10.1016/j.palaeo.2021.110279CrossRefGoogle Scholar
Spassov, S., Heller, F., Kretzschmar, R., Evans, M.E., Yue, L.P., Nourgaliev, D.K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/palaesol sequence at Lingtai (Central Chinese Loess Plateau). Physics of the Earth and Planetary Interiors 140, 255275.CrossRefGoogle Scholar
Stevens, T., Adamiec, G., Bird, A.F., Lu, H., 2013. An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating. Quaternary Science Reviews 82, 121e132.CrossRefGoogle Scholar
Stevens, T., Sechi, D., Bradák, B., Orbe, R., Baykal, Y., Cossu, G., Tziavaras, C., Andreucci, S., Pascucci, V., 2020. Abrupt last glacial dust fall over southeast England associated with dynamics of the British-Irish ice sheet. Quaternary Science Reviews 250, 106641.10.1016/j.quascirev.2020.106641CrossRefGoogle Scholar
Sun, W., Banerjee, S.K., Hunt, C.P., 1995. The role of maghemite in the enhancement of magnetic signal in the Chinese loess-paleosol sequence: an extensive rock magnetic study combined with citrate-bicarbonate-dithionite treatment. Earth and Planetary Science Letters 133 (3e4), 493e505.10.1016/0012-821X(95)00082-NCrossRefGoogle Scholar
Tecsa, V., Mason, J.A., Johnson, W.C., Miao, X., Constantin, D., Radu, S., Magdas, D.A., Veres, D., Marković, S.B., Timar-Gabor, A., 2020. Latest Pleistocene to Holocene loess in the central Great Plains: optically stimulated luminescence dating and multi-proxy analysis of the Enders loess section (Nebraska, USA). Quaternary Science Reviews 229, 106130.10.1016/j.quascirev.2019.106130CrossRefGoogle Scholar
Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, Winchester, MA.CrossRefGoogle Scholar
Torrent, J., Liu, Q., Bloemendal, J., Barrón, V., 2007. Magnetic enhancement and iron oxides in the upper Luochuan loess–paleosol sequence, Chinese Loess Plateau. Soil Science Society of America Journal 71, 15701578.CrossRefGoogle Scholar
Tudryn, A., Chalié, F., Lavrushin, Yu.A., Antipov, M.P., Spiridonova, E.A., Lavrushin, V., Tucholka, P., Leroy, S.A.G., 2013. Late Quaternary Caspian Sea environment: late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga river. Quaternary International 292, 193204.CrossRefGoogle Scholar
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into central and East Asia. Quaternary Science Reviews 25, 23802389.CrossRefGoogle Scholar
Vlaminck, S., Kehl, M., Lauer, T., Shahriari, A., Sharifi, J., Eckmeier, E., Lehndorff, E., Khormali, F., Frechen, M., 2016. Loess-soil sequence at Toshan (northern Iran): insights into late Pleistocene climate change. Quaternary International 399, 122135.CrossRefGoogle Scholar
Vlaminck, S., Kehl, M., Rolf, C., Franz, S.O., Lauer, T., Lehndorff, E., Frechen, M., Khormali, F., 2018. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia— detailed insights from the loess profile Toshan (NE Iran). Quaternary Science Reviews 180, 7595.10.1016/j.quascirev.2017.11.010CrossRefGoogle Scholar
Wacha, L., Laag, C., Grizelj, A., Tsukamoto, S., Zeeden, C., Ivanišević, D., Rolf, C., Banak, A., Frechen, M., 2021. High-resolution palaeoenvironmental reconstruction at Zmajevac (Croatia) over the last three glacial/interglacial cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 576, 110504.CrossRefGoogle Scholar
Wang, L., Jia, J., Xia, D., Liu, H., Gao, F., Duan, Y., Wang, Q., Xie, H., Chen, F., 2019. Climate change in arid central Asia since MIS 2 revealed from a loess sequence in Yili Basin, Xinjiang, China. Quaternary International 502, 258266.CrossRefGoogle Scholar
Wang, X., Wei, H.T., Taheri, M., Khormali, F., Danukalova, G., Chen, F.H., 2016. Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports 6, 20560.CrossRefGoogle ScholarPubMed
White, A.F., Blum, A.E., Bullen, T.D., Vivit, D.V., Schulz, M., Fitzpatrick, J., 1999. The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochimica et Cosmochimica Acta 63, 32773291.CrossRefGoogle Scholar
Worm, H.U., 1998. On the superparamagnetic-stable single domain transition for magnetite and frequency dependency of susceptibility. Geophysical Journal International 133, 201206.CrossRefGoogle Scholar
Yamazaki, T., Abdeldayem, A.L., Ikehara, K., 2003. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30,000 years. Earth, Planets and Space 55, 327340.CrossRefGoogle Scholar
Yang, S., Forman, S.L., Song, Y., Pierson, J., Mazzocco, J., Li, X., Shi, Z., Fang, X., 2014. Evaluating OSL-SAR protocols for dating quartz grains from the loess in Ili Basin, Central Asia. Quaternary Geochronology 20, 7888.CrossRefGoogle Scholar
Yang, S., Li, D., Liu, N., Zan, J., Liu, W., Kang, J., Murodov, A., Fang, X., 2020. Quartz optically stimulated luminescence dating of loess in Tajikistan and its paleoclimatic implications for arid Central Asia since the Lateglacial. Palaeogeography, Palaeoclimatology, Palaeoecology 556, 109881.CrossRefGoogle Scholar
Yanina, T.A., 2012. Correlation of the Late Pleistocene paleogeographical events of the Caspian Sea and Russian Plain. Quaternary International 271, 120129.CrossRefGoogle Scholar
Yanina, T.A., 2014. The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene. Quaternary International 345, 8899.CrossRefGoogle Scholar
Yanina, T., Sorokin, V., Bezrodnykh, Y., Romanyuk, B., 2018. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quaternary International 465, 130141.CrossRefGoogle Scholar
Ye, C., Yang, Y., Fang, X., Zan, J., Tan, M., Yang, R., 2020. Chlorite weathering linked to magnetic enhancement in red clay on the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 538, 109446.CrossRefGoogle Scholar
Zeeden, C., Hambach, U., Veres, D., Fitzsimmons, K., Obreht, I., Bösken, J., Lehmkuhl, F., 2018. Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology 509, 164181.CrossRefGoogle Scholar
Zeeden, C., Krauß, L., Kels, H., Lehmkuhl, F., 2017. Digital image analysis of outcropping sediments: Comparison to photospectrometric data from Quaternary loess deposits at Şanoviţa (Romania) and Achenheim (France). Quaternary International 429, 100107.CrossRefGoogle Scholar