Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T17:08:22.863Z Has data issue: false hasContentIssue false

ESR, U-series and paleomagnetic dating of Gigantopithecus fauna from Chuifeng Cave, Guangxi, southern China

Published online by Cambridge University Press:  20 January 2017

Qingfeng Shao*
Affiliation:
College of Geography Science, Nanjing Normal University, Nanjing 210023, China
Wei Wang
Affiliation:
Guangxi Museum of Nationalities, Nanning 530028, China
Chenglong Deng
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Pierre Voinchet
Affiliation:
Department of Prehistory, Muséum National d'Histoire Naturelle, UMR 7194 CNRS, Paris 75005, France
Min Lin
Affiliation:
National Key Laboratory of Metrology and Calibration Technology, China Institute of Atomic Energy, Beijing 102413, China
Antoine Zazzo
Affiliation:
CNRS-Muséum National d'Histoire Naturelle, UMR 7209, Paris 75013, France
Eric Douville
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement, CNRS-CEA-UVSQ, Gif/Yvette cedex 91198, France
Jean-Michel Dolo
Affiliation:
CEA, I2BM, Orsay Cedex 91401, France
Christophe Falguères
Affiliation:
Department of Prehistory, Muséum National d'Histoire Naturelle, UMR 7194 CNRS, Paris 75005, France
Jean-Jacques Bahain
Affiliation:
Department of Prehistory, Muséum National d'Histoire Naturelle, UMR 7194 CNRS, Paris 75005, France
*
* Corresponding author.E-mail address: 90341@njnu.edu.cn (Q. Shao).

Abstract

Several Gigantopithecus faunas associated with taxonomically undetermined hominoid fossils and/or stone artifacts are known from southern China. These faunas are particularly important for the study of the evolution of humans and other mammals in Asia. However, the geochronology of the Gigantopithecus faunas remains uncertain. In order to solve this problem, a program of geochronological studies of Gigantopithecus faunas in Guangxi Province was recently initiated. Chuifeng Cave is the first studied site, which yielded 92 Gigantopithecus blacki teeth associated with numerous other mammalian fossils. We carried out combined ESR/U-series dating of fossil teeth and sediment paleomagnetic studies. Our ESR results suggest that the lower layers at this cave can be dated to 1.92 ± 0.14 Ma and the upper layers can be dated to older than 1.38 ± 0.17 Ma. Correlation of the recognized magnetozones to the geomagnetic polarity timescale was achieved by combining magnetostratigraphic, biostratigraphic and ESR data. The combined chronologies establish an Olduvai subchron (1.945–1.778 Ma) for the lowermost Chuifeng Cave sediments. We also analyzed the enamel δ13C values of the Gigantopithecus faunas. Our results show that southern China was dominated by C3 plants during the early Pleistocene and that the Gigantopithecus faunas lived in a woodland-forest ecosystem.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamiec, G., and Aitken, M. Dose–rate conversion factors: update. Ancient TL 16, (1998). 3750.Google Scholar
Apers, D., Debuyst, R., De Canniere, P., Dejehet, F., and Lombard, E. A criticism of the dating by electron paramagnetic resonance (ESR) of the stalagmitic floors of the Caune de L'Arago at Tautavel. De Lumley, H., and Labeyrie, J. Absolute Dating and Isotope Analysis in Prehistory—Methods and Limits. (1981). CNRS, Paris Prétirage. 533550.Google Scholar
Bahain, J.-J., Yokoyama, Y., Falguères, C., and Sarcia, M.N. ESR dating of tooth enamel: a comparison with K–Ar dating. Quaternary Science Reviews 11, (1992). 245250.Google Scholar
Berger, G.W., and Huntley, D.J. Test data for exponential fits. Ancient TL (1989). 4346.Google Scholar
Biasatti, D., Wang, Y., and Gao, F. Paleoecologies and paleoclimates of Late Cenozoic mammals from southwest China: evidence from stable carbon and oxygen isotopes. Journal of Asian Earth Sciences 44, (2012). 4861.CrossRefGoogle Scholar
Brennan, B.J., Rink, W.J., McGuirl, E.L., Schwarcz, H.P., and Prestwich, W.V. Beta doses in tooth enamel by “one-group” theory and the ROSY ESR dating software. Radiation Measurements 27, (1997). 307314.Google Scholar
Cerling, T.E., and Harris, J.M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, (1999). 347363.CrossRefGoogle ScholarPubMed
Cerling, T.E., Harris, J.M., Ambrose, S.H., Leakey, M.G., and Solounias, N. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. Journal of Human Evolution 33, (1997). 635650.Google Scholar
Cetin, O., Wieser, A., Walther, R., Ozer, A.M., Fill, U., and Regulla, D.F. Models of the G = 2.0006 ESR signal growth curve in carbonates. Radiation Protection Dosimetry 47, (1993). 675678.Google Scholar
Ciochon, R.L. The mystery ape of Pleistocene Asia. Nature 459, (2009). 910911.CrossRefGoogle ScholarPubMed
Ciochon, R.L. Divorcing hominins from the StegodonAiluropoda fauna: new views on the antiquity of hominins in Asia. Fleagle, J.G., Shea, J.J., Grine, F., Baden, A.L., and Leakey, R.E. Out of Africa I: The First Hominin Colonization of Eurasia. (2010). Springer, Dordrecht. 111126.Google Scholar
Ciochon, R.L., Piperno, D.R., and Thompson, R.G. Opal phytoliths found on the teeth of the extinct ape Gigantopithecus blacki: implications for paleodietary studies. Proceedings of the National Academy of Sciences of the United States of America 87, (1990). 81208124.CrossRefGoogle ScholarPubMed
Ciochon, R.L., Long, V.T., Larick, R., Gonzalez, L., Grün, R., De Vos, J., Yonge, C., Taylor, L., Yoshida, H., and Reagan, M. Dated co-occurrence of Homo erectus and Gigantopithecus from Tham Khuyen Cave, Vietnam. Proceedings of the National Academy of Sciences of the United States of America 93, (1996). 30163020.Google Scholar
Curnoe, D., Grün, R., Taylor, L., and Thackeray, J.F. Direct ESR dating of a Pliocene hominin from Swartkrans. Journal of Human Evolution 40, (2001). 379391.CrossRefGoogle ScholarPubMed
Daegling, D.J., and Grine, F.E. Bamboo feeding, dental microwear, and diet of the Pleistocene ape Gigantopithecus blacki . South African Journal of Science 90, (1994). 527532.Google Scholar
Dean, M.C., and Schrenk, F. Enamel thickness and development in a third permanent molar of Gigantopithecus blacki . Journal of Human Evolution 45, (2003). 381387.Google Scholar
Deng, T., Dong, J., and Wang, Y. Variation of terrestrial ecosystem recorded by stable carbon isotopes of fossils in northern China during the Quaternary. Chinese Science Bulletin 47, (2002). 7678.Google Scholar
Douville, E., Sallé, E., Frank, N., Eisele, M., Pons-Branchu, E., and Ayrault, S. Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry. Chemical Geology 272, (2010). 111.CrossRefGoogle Scholar
Duval, M., Grün, R., Falguères, C., Bahain, J.-J., and Dolo, J.M. ESR dating of Lower Pleistocene fossil teeth: limits of the single saturating exponential (SSE) function for the equivalent dose determination. Radiation Measurements 44, (2009). 477482.Google Scholar
Duval, M., Falguères, C., Bahain, J.-J., Grün, R., Shao, Q.F., Aubert, M., Dolo, J.-M., Agusti, J., Martinez-Navarro, B., Palmqvist, P., and Toro-Moyano, I. On the limits of using combined U-series/ESR method to date fossil teeth from two early Pleistocene archaeological sites of the Orce area (Guadix-Baza basin, Spain). Quaternary Research 77, (2012). 482491.Google Scholar
Ehleringer, J.R., and Monson, R.K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24, (1993). 411439.Google Scholar
Falguères, C., Bahain, J.-J., Yokoyama, Y., Arsuaga, J.L., Bermúdez de Castro, J.M., Carbonell, E., Bischoff, J.L., and Dolo, J.-M. Earliest humans in Europe: the age of TD6 Gran Dolina, Atapuerca, Spain. Journal of Human Evolution 37, (1999). 343352.Google Scholar
Falguères, C., Bahain, J.-J., Dolo, J.-M., Mercier, N., and Valladas, H. On the interest and the limits of using combined ESR/U-series model in the case of very late uranium uptake. Quaternary Geochronology 2, (2007). 403408.Google Scholar
Falguères, C., Bahain, J.-J., Tozzi, C., Boschian, G., Dolo, J.-M., Mercier, N., Valladas, H., and Yokoyama, Y. ESR/U-series chronology of the Lower Palaeolithic palaeoanthropological site of Visogliano, Trieste, Italy. Quaternary Geochronology 3, (2008). 390398.Google Scholar
Falguères, C., Bahain, J.-J., Bischoff, J.L., Perez-Gonzalez, A., Ortega, A.I., Ollé, A., Quiles, A., Ghaleb, B., Moreno, D., Dolo, J.-M., Shao, Q., Vallverdù, J., carbonell, E., Bermùdez de castro, J.M., and Arsuaga, J.L. Combined ESR/U-series chronology of Acheulian hominid-bearing layers at Trinchera Galeria site, Atapuerca, Spain. Journal of Human Evolution 65, (2013). 168184.Google Scholar
Farquhar, G., Ehleringer, J., and Hubick, K. Carbon isotope discrimination and photosynthesis. Annual Review Plant Physiology and Plant Molecular Biology 40, (1989). 503537.Google Scholar
Grün, R. Electron spin resonance (ESR) dating. Quaternary International 1, (1989). 65109.Google Scholar
Grün, R. Direct dating of human fossils. Yearbook of Physical Anthropology 49, (2006). 248.Google Scholar
Grün, R. The DATA program for the calculation of ESR age estimates on tooth enamel. Quaternary Geochronology 4, (2009). 231232.CrossRefGoogle Scholar
Grün, R., and Brumby, S. The assessment of errors in past radiation doses extrapolated from ESR/TL dose–response data. Radiation Measurements 23, 2–3 (1994). 307315.Google Scholar
Grün, R., and Katzenberger-Apel, O. An alpha irradiator for ESR dating. Ancient TL 12, (1994). 3538.Google Scholar
Grün, R., and Rhodes, E. Simulations of saturating exponential ESR/TL dose response curves—weighting of intensity values by inverse variance. Ancient TL 10, (1992). 5056.Google Scholar
Grün, R., Schwarcz, H.P., and Chadam, J. ESR dating of tooth enamel: coupled correction for U-uptake and U-series disequilibrium. Nuclear Tracks and Radiation Measurements 14, (1988). 237241.Google Scholar
Grün, R., Stringer, C., McDermott, F., Nathan, R., Porat, N., Robertson, S., Taylor, L., Mortimer, G., Eggins, S., and McCulloch, M. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. Journal of Human Evolution 49, (2005). 316334.CrossRefGoogle Scholar
Grün, R., Joannes-Boyau, R., and Stringer, C. Two types of CO2-radicals threaten the fundamental of ESR dating of tooth enamel. Quaternary Geochronology 3, (2008). 150172.Google Scholar
Han, F., Bahain, J.-J., Boëda, E., Hou, Y., Huang, W., Falguères, C., Rasse, M., Wei, G., Garcia, T., Shao, Q., and Yin, G. Preliminary results of combined ESR/U-series dating of fossil teeth from Longgupo cave, China. Quaternary Geochronology 10, (2012). 436442.Google Scholar
Herries, A.I.R., Curnoe, D., and Adams, J.W. A multi-disciplinary seriation of early Homo and Paranthropus bearing palaeocaves in southern Africa. Quaternary International 202, (2009). 1428.Google Scholar
Hilgen, F.J., Lourens, L.J., and Van Dam, J.A. The Neogene period. Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M. The Geologic Time Scale 2012. (2012). Elsevier BV, Amsterdam, the Netherland. 923978.Google Scholar
Hou, Y.M., Potts, R., Yuan, B.Y., Guo, Z.T., Deino, A., Wang, W., Clark, J., Xie, G.M., and Huang, W.W. Mid-Pleistocene Acheulian-like stone technology of the Bose basin, South China. Science 287, (2000). 16221626.Google Scholar
Huang, W., Ciochon, R., Gu, Y., Larick, R., Fang, Q., Schwarcz, H., Yonge, C., de Vos, J., and Rink, W. Early Homo and associated artefacts from Asia. Nature 378, (1995). 275278.Google Scholar
Jablonski, N.G. The response of catarrhine primates to Pleistocene environmental fluctuations in East Asia. Primates 39, (1998). 2937.CrossRefGoogle Scholar
Jin, C., Qin, D., Pan, W., Tang, Z., Liu, J., Wang, Y., Deng, C., Zhang, Y., Dong, W., and Tong, H. A newly discovered Gigantopithecus fauna from Sanhe Cave, Chongzuo, Guangxi, South China. Chinese Science Bulletin 54, (2009). 788797.Google Scholar
Jin, C.Z., Wang, Y., Deng, C.L., Harrison, T., Qin, D.G., Pan, W.S., Zhang, Y.Q., Zhu, M., and Yan, Y.L. Chronological sequence of the early Pleistocene Gigantopithecus faunas from cave sites in the Chongzuo, Zuojiang River area, South China. Quaternary International (2014). http://dx.doi.org/10.1016/j.quaint.2013.12.051)Google Scholar
Joannes-Boyau, R., and Grün, R. A comprehensive model for CO2-radicals in fossil tooth enamel: implications for ESR dating. Quaternary Geochronology 6, (2011). 8297.Google Scholar
Johnson, A.E. Skeletal estimates of Gigantopithecus based on a gorilla analogy. Journal of Human Evolution 8, (1979). 585587.Google Scholar
Kirschvink, J.L. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, (1980). 699718.Google Scholar
Kohn, M.J. Models of diffusion-limited uptake of trace elements in fossils and rates of fossilization. Geochimica et Cosmochimica Acta 72, (2008). 37583770.CrossRefGoogle Scholar
Kohn, M.J., and Cerling, T.E. Stable isotopic compositions of biological apatite. Kohn, M.J., Rakovan, J., and Huges, J.M. Phosphates — Geochemical, Geobiological and Materials Importance, Reviews in Mineralogy and Geochemistry.. (2002). Mineralogical Society of America, Washington DC. 455480.Google Scholar
Kupczik, K., and Dean, M.C. Comparative observations on the tooth root morphology of Gigantopithecus blacki . Journal of Human Evolution 54, (2008). 196204.Google Scholar
Louys, J., Curnoe, D., and Tong, H.W. Characteristics of Pleistocene megafauna extinctions in Southeast Asia. Palaeogeography Palaeoclimatology Palaeoecology 243, (2007). 152173.CrossRefGoogle Scholar
Miller, S.F., White, J.L., and Ciochon, R.L. Assessing mandibular shape variation within Gigantopithecus using a geometric morphometric approach. American Journal of Physical Anthropology 137, (2008). 201212.Google Scholar
O'Leary, M. Carbon isotopes in photosynthesis. Bioscience 38, (1988). 328335.Google Scholar
Olejniczak, A.J., Smith, T.M., Wang, W., Potts, R., Ciochon, R.L., Kullmer, O., Schrenk, F., and Hublin, J.-J. Molar enamel thickness and dentine horn height in Gigantopithecus blacki . American Journal of Physical Anthropology 135, (2008). 8591.Google Scholar
Qu, Y., Jin, Z., Zhang, Y., Hu, Y., Shang, X., and Wang, C. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quaternary International (2013). http://dx.doi.org/10.1016/j.quaint.2013.10.053 Google Scholar
Rink, W.J. Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiation Measurements 27, (1997). 9751025.Google Scholar
Rink, W.J., Wei, W., Bekken, D., and Jones, H.L. Geochronology of AiluropodaStegodon fauna and Gigantopithecus in Guangxi Province, southern China. Quaternary Research 69, (2008). 377387.CrossRefGoogle Scholar
Schwarcz, H.P., Grün, R., and Tobias, P.V. ESR dating of the australopithecine site of Sterkfontein, South Africa. Journal of Human Evolution 26, (1994). 175181.Google Scholar
Shao, Q., Bahain, J.-J., Falguères, C., Peretto, C., Arzarello, M., Minelli, A., Hohenstein, U.T., Dolo, J.-M., Garcia, T., Frank, N., and Douville, E. New ESR/U-series data for the early middle Pleistocene site of Isernia la Pineta, Italy. Radiation Measurements 46, (2011). 847852.Google Scholar
Shao, Q., Bahain, J.-J., Falguères, C., Dolo, J.-M., and Garcia, T. A new U-uptake model for combined ESR/U-series dating of tooth enamel. Quaternary Geochronology 10, (2012). 406411.Google Scholar
Sun, L., Wang, Y., Liu, C.C., Zuo, T.W., Ge, J.Y., Zhu, M., Jin, C.Z., Deng, C.L., and Zhu, R.X. Magnetochronological sequence of the Early Pleistocene Gigantopithecus faunas in Chongzuo, Guangxi, southern China. Quaternary International (2014). href="http://dx.doi.org/10.1016/j.quaint.2013.08.049)Google Scholar
Tian, F., Huang, F., Huang, Q.Y., Huang, S.M., Huang, X., Xie, S.W., Yuan, B.Y., Huang, W.W., and Wang, W. Quaternary geomorphology and geological development of the Bubing Basin in Guangxi, South China. Dong, W. Proceedings of the Eleventh Annual Meeting of the Chinese Society of Vertebrate Paleontology. (2008). China Ocean Press, Beijing. 221228.Google Scholar
Wagner, G.A., Krbetschek, M., Degering, D., Bahain, J.-J., Shao, Q., Falguères, C., Voinchet, P., Dolo, J.-M., Garcia, T., and Rightmire, G.P. Radiometric dating of the type-site for Homo heidelbergensis at Mauer, Germany. Proceedings of the National Academy of Sciences of the United States of America 107, (2010). 1972619730.CrossRefGoogle ScholarPubMed
Wang, W. New discoveries of Gigantopithecus blacki teeth from Chuifeng Cave in the Bubing Basin, Guangxi, south China. Journal of Human Evolution 57, (2009). 229240.Google Scholar
Wang, W., Potts, R., Hou, Y.M., Chen, Y.F., Wu, H.Y., Yuan, B.Y., and Huang, W.W. Early Pleistocene hominid teeth recovered in Mohui cave in Bubing Basin, Guangxi, South China. Chinese Science Bulletin 50, (2005). 27772782.Google Scholar
Wang, W., Potts, R., Baoyin, Y., Huang, W., Cheng, H., Edwards, R.L., and Ditchfield, P. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. Journal of Human Evolution 52, (2007). 370379.Google Scholar
Woo, J.-K. The mandibles and dentition of Gigantopithecus . Palaeontologia Sinica New Series D 11, (1962). 194.Google Scholar
Yin, G., Bahain, J.-J., Shen, G., Tissoux, H., Falguères, C., Dolo, J.-M., Han, F., and Shao, Q. ESR/U-series study of teeth recovered from the palaeoanthropological stratum of the Dali Man site (Shaanxi Province, China). Quaternary Geochronology 6, (2011). 98105.Google Scholar
Zazzo, A., Balasse, M., Passey, B.H., Moloney, A.P., Monahan, F.J., and Schmidt, O. The isotope record of short- and longterm dietary changes in sheep tooth enamel: implications for quantitative reconstruction of paleodiets. Geochimica et Cosmochimica Acta 74, (2010). 35713586.Google Scholar
Zhang, Y. Variability and evolutionary trends in tooth size of Gigantopithecus blacki . American Journal of Physical Anthropology 59, (1982). 2132.Google Scholar
Zhao, L.X., and Zhang, L.Z. New fossil evidence and diet analysis of Gigantopithecus blacki and its distribution and extinction in South China. Quaternary International 286, (2012). 6974.Google Scholar
Zhao, L.X., Zhang, L.Z., Zhang, F.S., and Wu, X.Z. Enamel carbon isotope evidence of diet and habitat of Gigantopithecus blacki and associated mammalian megafauna in the Early Pleistocene of South China. Chinese Science Bulletin 56, (2011). 35903595.Google Scholar
Zheng, S.H. Jianshi Hominid Site (in Chinese). (2004). Science Press, Beijing. 1412.Google Scholar
Zijderveld, J.D.A. A.C. demagnetization in rocks: analysis of results. Collinson, D.W., Creer, K.M., and Runcorn, S.K. Methods in Paleomagnetism. (1967). Elsevier, New York. 254286.Google Scholar