Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T04:16:10.026Z Has data issue: false hasContentIssue false

Control of paleoshorelines by trench forebulge uplift, Loyalty Islands

Published online by Cambridge University Press:  20 January 2017

William R. Dickinson*
Affiliation:
Department of Geosciences, Box 21077, University of Arizona, Tucson, AZ 85721, USA
*
*Fax: + 1 520 299 5220. E-mail address:wrdickin@dakotacom.net.

Abstract

Unlike most tropical Pacific islands, which lie along island arcs or hotspot chains, the Loyalty Islands between New Caledonia and Vanuatu owe their existence and morphology to the uplift of pre-existing atolls on the flexural forebulge of the New Hebrides Trench. The configuration and topography of each island is a function of distance from the crest of the uplifted forebulge. Both Maré and Lifou are fully emergent paleoatolls upon which ancient barrier reefs form highstanding annular ridges that enclose interior plateaus representing paleolagoon floors, whereas the partially emergent Ouveapaleoatoll rim flanks a drowned remnant lagoon. Emergent paleoshoreline features exposed by island uplift include paleoreef flats constructed as ancient fringing reefs built to past low tide levels and emergent tidal notches incised at past high tide levels. Present paleoshoreline elevations record uplift rates of the islands since last-interglacial and mid-Holocene highstands in global and regional sea levels, respectively, and paleoreef stratigraphy reflects net Quaternary island emergence. The empirical uplift rates vary in harmony with theoretical uplift rates inferred from the different positions of the islands in transit across the trench forebulge at the trench subduction rate. The Loyalty Islands provide a case study of island environments controlled primarily by neotectonics.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aïssaoui, D.M., (1988). Diagenèse et géodynamique dans la formation des atolls: Îles Loyauté, Nouvelle-Caledonie. Comptes Rendus de l'Académie des Sciences de Paris (Série II) 306, 12411246.Google Scholar
Auzende, J.-M., Eissen, J.P., Lafoy, Y., Gente, P., Charlou, J.L., (1988). Seafloor spreading in the North Fiji Basin (southwest Pacific). Tectonophysics 146, 317351.Google Scholar
Auzende, J.M., Pelletier, B., Lafoy, Y., (1994). Twin active spreading ridges in the North Fiji Basin (southwest Pacific). Geology 22, 6366.Google Scholar
Auzende, J.-M., (1995a). Activité tectonique, magmatique et hydrothermale autour des triples jonctions de 16°50'S–173°30'E et de 16°30'S–176°10'E dans la basin nord fidjien (SW Pacifique): Campagne HYFIFLUX. Comptes Rendus de l'Académie des Sciences de Paris (Série II) 321, 239246.Google Scholar
Auzende, J.-M., Hey, R.N., Pelletier, B., Rouland, D., Lafoy, Y., Garcia, E., Huchon, P., (1995b). Propagating rift west of the Fiji archipelago (North Fiji Basin, SW Pacific). Journal of Geophysical Research 100, 17,82317,835.Google Scholar
Berger, W.B., (2008). Sea level in the late Quaternary: patterns of variation and implications. International Journal of Earth Sciences 97, 11431150.Google Scholar
Bernat, M., Launay, J., Recy, J., (1976). Datation à l'ionium de quelques formations coralliennes émergées de Nouvelle-Calédonie et des Îles Loyauté. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris (Série D) 282, 912.Google Scholar
Bintaja, R., van de Wal, R.S.W., Oerlemans, J., (2005). Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125128.Google Scholar
Bloom, A.L., Broecker, W.S., Chappell, J.M.A., Mathews, R.K., Mesolella, K.J., (1974). Quaternary sea level fluctuations on a tectonic coast: new 230Th/234U dates from the Huon Peninsula, New Guinea. Quaternary Research 4, 185205.Google Scholar
Bodine, J.H., Steckler, M.S., Watts, A.B., (1981). Observations of flexure and the rheology of the oceanic lithosphere. Journal of Geophysical Research 86, 36953707.Google Scholar
Bogdanov, I., Huaman, D., Thovert, J.-F., Genthon, P., Adler, P.M., (2007). A model for fracturation in the Loyalty Islands. Comptes Rendus Geoscience 339, 840848.CrossRefGoogle Scholar
Bogdanov, I., Huaman, D., Thovert, J.-F., Genthon, P., Adler, P.M., (2011). Tectonic stresses seaward of an aseismic ridge–trench collision zone: a remote sensing approach on the Loyalty Islands, SW Pacific. Tectonophysics 499, 7791.Google Scholar
Bull, W.B., (1985). Correlation of flights of global marine terraces. Morisawa, M., Hack, J. Tectonic Geomorphology. Allen & Unwin, Hemel Hempstead, England.129152.Google Scholar
Cabioch, G., Thomassin, B.A., Lecolle, J.F., (1989). Age d'émergence des récifs frangeant Holoc"nes autour de la “Grand Terre” de Nouvelle-Calédonie (SO Pacifique): Nouvelle interpretation de la courbe de niveaux marins depuis 8000 ans B.P. Comptes Rendus de l'Académie des Sciences de Paris (Série D) 308, 419425.Google Scholar
Cabioch, G., Montaggioni, L.F., Faure, G., (1995). Holocene initiation and development of New Caledonian fringing reefs. Coral Reefs 14, 131140.CrossRefGoogle Scholar
Calmant, S., Lebellegard, P., Taylor, F., Bevis, M., Maillard, D., Récy, J., Bonneau, J., (1995). Geodetic measurements of convergence across the New Hebrides subduction zone. Geophysical Research Letters 22, 25732576.Google Scholar
Cande, S.C., Kent, D.V., (1992). A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 97, 13,91713,951.Google Scholar
Cande, S.C., Kent, D.V., (1995). Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 60936095.Google Scholar
Carriére, D., (1987). Enregistrement sédimentaire, diagénétique et morphologique d'un bombement lithosphérique sur l'atoll soulevé de Maré, archipel des Loyautés, Nouvelle Calédonie. Comptes Rendus de l'Académie des Sciences de Paris (Série II) 305, 975980.Google Scholar
Carson, M.T., (2008). Correlation of environmental and cultural chronology in New Caledonia. Geoarchaeology 23, 695714.Google Scholar
Chappell, J., (1974a). Geology of coral terraces, Huon Peninsula, New Guinea: Quaternary tectonic movements and sea-level changes. Geological Society of America Bulletin 85, 553570.Google Scholar
Chappell, J., (1974b). Relationships between sealevels, 18O variations, and orbital perturbations, during the past 250,000 years. Nature 252, 199202.Google Scholar
Chappell, J., (1983). Evidence for smoothly falling sea levels relative to north Queensland, Australia during the past 6000 years. Nature 302, 406408.Google Scholar
Chappell, K., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., (1996). Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227236.Google Scholar
Chase, T.E., Seekins, B.A., (1988). Submarine topography of the Vanuatu and southeastern Solomon Islands regions. Greene, H.G., Wong, F.L. Geology and Offshore Resources of Pacific Island Arcs — Vanuatu Region. Circum-Pacific Council for Energy and Mineral Resources Earth Science Series 8, Houston.3536.Google Scholar
Chen, J.H., Curran, H.A., White, B., Wasserburg, G.J., (1991). Precise chronology of the last interglacial period: 234U/230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103, 8297.Google Scholar
Chevalier, J.P., (1973). Coral reefs of New Caledonia. Jones, O.A., Endean, R. Biology and Geology of Coral Reefs. Academic Press, New York.143167.Google Scholar
Coudray, J., Montaggioni, L., (1982). Coraux et récifs coralliens de la province indo-pacifique: Repartition géographiques et altitudinale en relation avec la tectonique globale. Bulletin de la Société Géologique de France (Série 7) 24, 981993.CrossRefGoogle Scholar
DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., (1990). Current plate motions. Geophysical Journal International 101, 425478.Google Scholar
DeMets, C., Gordon, R.G., Argus, D.F., Stein, S., (1994). Effect of recent revisions to the geomagnetic reversals time scale on estimates of current plate motions. Geophysical Research Letters 21, 21912194.Google Scholar
Dickinson, W.R., (1998). Geomorphology and geodynamics of the Cook–Austral island-seamount chain in the south Pacific Ocean: implications for hotspots and plumes. International Geology Review 40, 10391075.Google Scholar
Dickinson, W.R., (2000). Hydro-isostatic and tectonic influences on emergent Holocene paleoshorelines in the Mariana Islands, western Pacific Ocean. Journal of Coastal Research 16, 735746.Google Scholar
Dickinson, W.R., (2001). Paleoshoreline record of relative Holocene sea levels on Pacific islands. Earth-Science Reviews 55, 191234.Google Scholar
Dickinson, W.R., (2003). Impact of mid-Holocene hydro-isostatic highstand in regional sea level on habitability of islands in Pacific Oceania. Journal of Coastal Research 19, 489502.Google Scholar
Dickinson, W.R., (2004). Impacts of eustasy and hydro-isostasy on the evolution and landforms of Pacific atolls. Palaeogeography, Palaeoclimatology, Palaeoecology 213, 251269.CrossRefGoogle Scholar
Dickinson, W.R., (2006). Temper sands in prehistoric Oceanian pottery: geotectonics, sedimentology, petrography, provenance. Geological Society of America Special Paper 406, (Boulder, Colorado).Google Scholar
Dickinson, W.R., (2009). Atoll living: how long already and until when?. GSA Today 19, 5 410.CrossRefGoogle Scholar
Dickinson, W.R., Burley, D.V., (2007). Geoarchaeology of Tonga: geotectonic and geomorphic controls. Geoarchaeology 22, 229259.Google Scholar
Dubois, J., Launay, J., Recy, J., (1974). Uplift movements in New Caledonia–Loyalty Islands area and their plate tectonics interpretation. Tectonophysics 24, 133150.Google Scholar
Dubois, J., Launay, J., Recy, J., (1975). Some new evidence on lithosphere bulges close to island arcs. Tectonophysics 26, 189196.Google Scholar
Dubois, J., Launay, J., Recy, J., Marshall, J., (1977). New Hebrides Trench: subduction rate from lithospheric bulge. Canadian Journal of Earth Sciences 14, 250255.Google Scholar
Dubois, J., Deplus, C., Diament, M., Daniel, J., Collot, J.-Y., (1988). Subduction of the Bougainville seamount (Vanuatu): mechanical and geodynamic implications. Tectonophysics 149, 111119.Google Scholar
Dutton, A., Lambeck, K., (2012). Ice volume and sea level during the last interglacial. Science 337, 216219.Google Scholar
Edwards, R.L., Chen, J.H., Ku, T.-L., Wasserburg, G.J., (1987). Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236, 15471553.Google Scholar
Guyomard, T.S., A"ssaoui, D.M., McNeil, D.F., (1996). Magnetostratigraphic dating of the uplifted atoll of Maré: geodynamics of the Loyalty Ridge, SW Pacific. Journal of Geophysical Research 101, 601612.CrossRefGoogle Scholar
Harvey, N., Barnett, E.J., Bourman, R.P., Belperio, A.P., (1999). Holocene sea-level change at Port Pirie, South Australia: a contribution to global sea-level estimates from tide gauges. Journal of Coastal Research 15, 607615.Google Scholar
Hodgkin, E.P., (1970). Geomorphology and biological erosion of limestone coasts in Malaysia. Geological Society of Malaysia Bulletin 3, 2751.CrossRefGoogle Scholar
Institut Géographique National. (1981). Carte Touristique 514 (Nouvelle Calédonie). Noumea: Service Topographique de la Nouvelle Calédonie. scale 1:500,000.Google Scholar
Israelson, C., Wohlfarth, B., (1999). Timing of the last-interglacial high sea level in the Seychelles Islands, Indian Ocean. Quaternary Research 51, 306316.CrossRefGoogle Scholar
Jones, D., Hunter, I.G., (1990). Pleistocene paleogeography and sea levels on the Cayman Islands, British West Indies. Coral Reefs 9, 8191.Google Scholar
Kopp, R.E., Simons, F.J., Mitrovica, J.X., Maloof, A.C., Oppenheimer, M., (2009). Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863868.CrossRefGoogle ScholarPubMed
Lafoy, Y., (1995). Morphostructure du segment septentrional du système basin et ride des Loyauté, SW Pacifique: Résultats de la champagne ZoNéCo 2. Comptes Rendus de l'Académie des Sciences de Paris (Série II) 321, 10091016.Google Scholar
Lambeck, K., Nakada, M., (1992). Constraints on the age and duration of the last interglacial period and on sea-level variations. Nature 357, 125128.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., (2005). A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003(17 pp.).Google Scholar
Louat, R., Pelletier, B., (1989). Seismotectonics and present-day relative plate motions in the New Hebrides–North Fiji Basin region. Tectonophysics 167, 4155.Google Scholar
Marshall, J.F., Launay, J., (1978). Uplift rates of the Loyalty Islands as determined by 230Th/234U dating of raised coral terraces. Quaternary Research 9, 186192.CrossRefGoogle Scholar
Mitrovica, J.X., Milne, G.A., (2002). On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quaternary Science Reviews 21, 21792190.Google Scholar
Mitrovica, J.X., Peltier, W.R., (1991). On postglacial geoid subsidence over the equatorial oceans. Journal of Geophysical Research 96, 20,05320,071.Google Scholar
Montaggioni, L.F., (2005). History of Indo-Pacific coral reef systems since the last glaciation: development patterns and controlling factors. Earth-Science Reviews 71, 175.CrossRefGoogle Scholar
Monzier, M., Daniel, J., Maillet, P., (1990). La collision ride de Loyauté/arc de Nouvelles-Hébrides (Pacifique sud-ouest). Océanologica Acta 10 (Spécial) 4356.Google Scholar
Muhs, D.R., (2002). Evidence for the timing and duration of the last interglacial period from high-precision U-series ages of corals on tectonically stable shorelines. Quaternary Research 58, 3640.Google Scholar
Muhs, D.R., Simmons, K.R., Steinke, B., (2002). Timing and warmth of the last interglacial period: new U-series evidence from Hawaii and Bermuda and a new fossil compilation from North America. Quaternary Science Reviews 21, 13551383.CrossRefGoogle Scholar
Neumann, A.C., Hearty, P.J., (1996). Rapid sea-level changes at the close of the last interglacial (substage 5e) recorded in Bahamian island geology. Geology 24, 775778.2.3.CO;2>CrossRefGoogle Scholar
Nunn, P.D., (1988). Plate boundary tectonics and oceanic geomorphology. Zeitschrift für Geomorphologie Supplementband 69, 3953.Google Scholar
Ota, Y., Chappell, J., (1999). Holocene sea-level rise and coral reef growth on a tectonically rising coast, Huon Peninsula, Papua New Guinea. Quaternary International 55, 5159.Google Scholar
Ota, Y., Chappell, J., Kelley, R., Yonekura, N., Matsumoto, E., Nishimura, T., Head, J., (1993). Holocene coral reef terraces and coseismic uplift of Huon Peninsula, Papua New Guinea. Quaternary Research 40, 177188.Google Scholar
Paris, J.-P., (1981). Géologie de Nouvelle-Calédonie: Un essai de synthèse. New Caledonia Bureau de Recherche éologiques et Miniéres Mémoire, Noumea.pp. 113.Google Scholar
Pelletier, B., Louat, R., (1989). Mouvements relatifs des plaques dans le sud-ouest Pacifique. Comptes Rendus de l'Académie des Sciences de Paris (Série II) 308, 123130.Google Scholar
Pelletier, B., Calmant, S., Pillet, R., (1998). Current tectonics of the Tonga–New Hebrides region. Earth and Planetary Science Letters 164, 262276.Google Scholar
Pirazzoli, P.A., Radtke, U., Hantoro, W.S., Jouannic, C., Hoang, C.T., Causse, C., Borel Best, M., (1991). Quaternary raised coral-reef terraces on Sumba Island, Indonesia. Science 252, 18341836.Google Scholar
Purdy, E.G., Winterer, E.L., (2001). Origin of atoll lagoons. Geological Society of America Bulletin 113, 837854.Google Scholar
Raymo, M.E., Huybers, P., (2008). Unlocking the mysteries of the ice ages. Nature 451, 284285.Google Scholar
Raymo, M.E., Lisiecki, L., Nisancioiglu, K., (2006). Plio-Pleistocene ice volumes, Antarctic climate, and the global δ18O record. Science 313, 492495.Google Scholar
Rohling, E.J., Grant, K., Bolshaw, M., Roberts, A.P., Siddall, M., Hemleben, Ch., Kucera, M., (2009). Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geoscience 2, 500504.Google Scholar
Scott, A.J., Rotondo, G.M., (1983). A model to explain the differences between Pacific plate island–atoll types. Coral Reefs 1, 139150.Google Scholar
Siddall, M., Rehling, E.J., Almogi-Labin, A., Hemleben, Ch., Meischner, D., Schmelzer, I., Smeed, D.A., (2003). Sea-level fluctuations during the last glacial cycle. Nature 423, 853858.Google Scholar
Speed, R.C., Larue, D.K., (1982). Barbados: architecture and implications for accretion. Journal of Geophysical Research 87, 36333643.Google Scholar
Spencer, T., Stoddart, D.R., Woodroffe, C.D., (1987). Island uplift and lithospheric flexure: observations and cautions from the South Pacific. Zeitschrift für Geomorphologie Supplementband 63, 87102.Google Scholar
Stirling, C.H., Esat, T.M., McCulloch, M.T., Lambeck, K., (1995). High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the last interglacial. Earth and Planetary Science Letters 135, 115130.Google Scholar
Tanahashi, M., Kisimoto, K., Joshima, M., Lafoy, Y., Honza, E., Auzende, J.M., (1991). Geological structure of the central spreading system, North Fiji Basin. Marine Geology 98, 187200.Google Scholar
Taylor, F.W., 10 co-authors, , (10 co-authors, 1995). Geodetic measurements of convergence at the New Hebrides island arc indicate fragmentation caused by an impending aseismic ridge. Geology 23, 10111014.Google Scholar
Taylor, F.W., 11 co-authors, , (11 co-authors, 2005). Rapid forearc uplift and subsidence caused by impinging bathymetric features: examples from the New Hebrides and Solomon arcs. Tectonics 24, TC6005(23 pp.).Google Scholar
Tiffin, D.L., (1993). Tectonic and structural features of the Pacific/Indo-Australian plate boundary in the North Fiji–Lau Basin regions, southwest Pacific. Geo-Marine Letters 13, 126131.Google Scholar
Tzedakis, P.C., Raynaud, D., McManus, J.F., Berger, A., Brovkin, V., Kiefer, T., (2009). Interglacial diversity. Nature Geoscience 2, 751755.Google Scholar
Wirrmann, D., Sémah, A.-M., Debenay, J.-P., Chacornac-Rault, M., (2011). Mid- to late Holocene environmental and climatic changes in New Caledonia, southwest tropical Pacific, inferred from the littoral plain Gouaro-Déva. Quaternary Research 76, 229242.CrossRefGoogle Scholar
Woodroffe, C.D., (1988). Vertical movement of isolated oceanic islands at plate margins: evidence from emergent reefs in Tonga (Pacific Ocean), Cayman Islands (Caribbean Sea) and Christmas Island (Indian Ocean). Zeitschrift für Geomorphologie Supplementband 69, 1737.Google Scholar
Woodroffe, C.D., Kennedy, D.M., Hopley, D., Rasmussen, C.E., Smithers, S.G., (2000). Holocene reef growth in Torrest Strait. Marine Geology 170, 331346.Google Scholar