Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T13:42:01.142Z Has data issue: false hasContentIssue false

Constraint envelope analyses of macroecological patterns reveal climatic effects on Pleistocene mammal extinctions

Published online by Cambridge University Press:  20 January 2017

Matheus S. Lima-Ribeiro*
Affiliation:
Laboratório de Macroecologia, Universidade Federal de Goiás, Campus Jataí, Cx. Postal 03 75804-020, Jataí, GO Brazil
Joaquín Hortal
Affiliation:
Departamento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales (MNCN-CSIC), C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
Sara Varela
Affiliation:
Department of Ecology, Faculty of Science, Charles University, Vinicná 7, 128 44 Praha 2, Czech Republic
José Alexandre F. Diniz-Filho
Affiliation:
Departamento de Ecologia, ICB, Universidade Federal de Goiás, Cx. Postal 131, 74001-970, Goiânia, GO, Brazil
*
*Corresponding author.E-mail address:mslima.ribeiro@gmail.com (M.S. Lima-Ribeiro).

Abstract

Quantitative analysis of macroecological patterns for late Pleistocene assemblages can be useful for disentangling the causes of late Quaternary extinctions (LQE). However, previous analyses have usually assumed linear relationships between macroecological traits, such as body size and range size/range shift, that may have led to erroneous interpretations. Here, we analyzed mammalian datasets to show how macroecological patterns support climate change as an important driver of the LQE, which is contrary to previous analyses that did not account for more complex relationships among traits. We employed quantile regression methods that allow a detailed and fine-tuned quantitative analysis of complex macroecological patterns revealed as polygonal relationships (i.e., constraint envelopes). We showed that these triangular-shaped envelopes that describe the macroecological relationship between body size and geographical range shift reflect nonrandom extinction processes under which the large-bodied species are more prone to extinction during events of severe habitat loss, such as glacial/interglacial transitions. Hence, we provide both a theoretical background and methodological framework to better understand how climate change induces body size-biased species sorting and shapes complex macroecological patterns.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosta, S.J., and Bernardo, J. New macroecological insights into functional constraints on mammalian geographical range size. Proceedings of the Royal Society B 280, (2013). 20130140 Google Scholar
Badgley, C., Barry, J.C., Morgan, M.E., Nelson, S.V., Behrensmeyer, A.K., Cerling, T.E., and Pilbeam, D. Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing. Proceedings of the National Academy of Sciences USA 105, (2008). 1214512149.Google Scholar
Barnosky, A.D., and Lindsey, E.L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, (2010). 1029.Google Scholar
Binzer, A., Brose, U., Curtsdotter, A., Eklöf, A., Rall, B.C., Riede, J.O., and de Castro, F. The susceptibility of species to extinctions in model communities. Basic and Applied Ecology 12, (2011). 590599.Google Scholar
Blackburn, T.M., and Gaston, K.J. Linking patterns in macroecology. Journal of Animal Ecology 70, (2001). 338352.Google Scholar
Blackburn, T.M., and Gaston, K.J. Macroecology: Concepts and Consequences. (2002). Blackwell Science, Oxford.Google Scholar
Borrero, L.A. The elusive evidence: the archeological record of the South American extinct megafauna. Haynes, G. American Megafaunal Extinctions at the End of the Pleistocene. (2009). Springer Science, Reno. 145168.Google Scholar
Bowman, J., Jaeger, J.A.G., and Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83, (2002). 20492055.Google Scholar
Brook, B.W., and Bowman, D.M.J.S. The uncertain blitzkrieg of Pleistocene megafauna. Journal of Biogeography 31, (2004). 517523.Google Scholar
Brook, B.W., Sodhi, N.S., and Bradshaw, C.J.A. Synergies among extinction drivers under global change. TRENDS in Ecology and Evolution 23, (2008). 453460.Google Scholar
Brown, J.H. Macroecology. (1995). University of Chicago Press, Chicago.Google Scholar
Brown, J.H., and Maurer, B.A. Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of the North American avifauna. The American Naturalist 130, (1987). 117.Google Scholar
Brown, J.H., and Maurer, B.A. Macroecology: the division of food and space among species on continents. Science 243, (1989). 11451150.Google Scholar
Brown, J.H., Stevens, G.C., and Kaufmnan, D.M. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27, (1996). 597623.Google Scholar
Cade, B.S., and Noon, B.R. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1, (2003). 412420.Google Scholar
Cade, B.S., Terrell, J., and Schroeder, R. Estimating effects of limiting factors with regression quantiles. Ecology 80, (1999). 311323.Google Scholar
Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R.P., Sechrest, W., Orme, C.D.L., and Purvis, A. Multiple causes of high extinction risk in large mammal species. Science 309, (2005). 12391241.Google Scholar
Caughley, G. Directions in conservation biology. Journal of Animal Ecology 63, (1994). 215244.Google Scholar
Cione, A.L., Tonni, E.P., and Soibelzon, L. Broken zig-zag: Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” 5, (2003). 119.Google Scholar
Cione, A.L., Tonni, E.P., and Soibelzon, L. Did humans cause the Late Pleistocene-Early Holocene mammalian extinctions in South America in a context of shrinking open areas?. Haynes, G. American Megafaunal Extinctions at the End of the Pleistocene. (2009). Springer Science, Reno. 125144.Google Scholar
Cooper, N., and Purvis, A. What factors shape rates of phenotypic evolution? A comparative study in four mammalian clades. Journal of Evolutionary Biology 22, (2009). 10241035.Google Scholar
Cooper, N., and Purvis, A. Body mass evolution in mammals: complexity in tempo and mode. The American Naturalist 175, (2010). 727738.Google Scholar
Dalén, L., Nyström, V., Valdiosera, C., Germonpré, M., Sablin, M., Turner, E., Angerbjörn, A., Arsuaga, J.L., and Goötherström, A. Ancient DNA reveals lack of postglacial habitat tracking in the arctic fox. Proceedings of the National Academy of Sciences USA 104, (2007). 67266729.Google Scholar
Damuth, J. Population-density and body size in mammals. Nature 290, (1981). 699700.Google Scholar
Diamond, J. Overview of recent extinctions. Western, D., and Pearl, M. Conservation for the Twenty-first Century. (1989). Oxford University Press, Oxford. 3741.Google Scholar
Diniz-Filho, J.A.F. Macroecology and the hierachical expansion of evolutionary theory. Global Ecology and Biogeography 13, (2004). 15.Google Scholar
Diniz-Filho, J.A.F., Carvalho, P., Bini, L.M., and Tôrres, N.M. Macroecology, geographic range size-body size relationship and minimum viable population analysis for new world carnivora. Acta Oecologica 27, (2005). 2530.Google Scholar
Diniz-Filho, J.A.F., Rodrígues, M.A., Bini, L.M., Olalla-Tárraga, M.Á., Carillo, M., Nabout, J.C., Hortal, J., and Hawkins, B.A. Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography 36, (2009). 22222236.Google Scholar
Doksum, K., and Koo, J.-Y. On spline estimators and prediction intervals in nonparametric regression. Computational Statistics & Data Analysis 35, (2000). 6782.Google Scholar
Eldredge, N. Macroevolutionary Dynamics: Species, Niches and Adaptive Peaks. (1989). McGraw-Hill, New York.Google Scholar
Eldredge, N. Reinventing Darwin: The Great Debate at the High Table of Evolutionary Theory. (1995). John Wiley and Sons, New York.Google Scholar
Eldredge, N., and Gould, S.J. Punctuated Equilibria: an alternative to phyletic gradualism. Schopf, T.J.M. Models in Paleobiology. (1972). Freeman, Cooper, San Francisco. 82115.Google Scholar
Eldredge, N., Thompson, J.N., Brakefield, P.M., Gavrilets, S., Jablonski, D., Jackson, J.B.C., Lenski, R.E., Lieberman, B.S., McPeek, M.A., Miller, W. III The dynamics of evolutionary stasis. Paleobiology 31, (2005). 133145.Google Scholar
Fiedel, S., and Haynes, G. A premature burial: comments on Grayson and Meltzer's “Requiem for overkill”. Journal of Archaeological Science 31, (2004). 121131.Google Scholar
Foote, M., Crampton, J.S., Beu, A.G., Marshall, B.A., Cooper, R.A., Maxwell, P.A., and Matcham, I. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science 318, (2007). 11311134.Google Scholar
Foote, M., Crampton, J.S., Beu, A.G., and Cooper, R.A. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology 34, (2008). 421433.Google Scholar
Freckleton, R.P., Noble, D., and Webb, T.J. Distributions of habitat suitability and the abundance-occupancy relationship. The American Naturalist 167, (2006). 260275.Google Scholar
Gaston, K.J., and Blackburn, T.M. Conservation implications of geographic range size body size relationships. Conservation Biology 10, (1996). 638646.Google Scholar
Gaston, K.J., and Blackburn, T.M. Pattern and Process in Macroecology. (2000). Blackwell, Oxford.Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., and Robinson, G.S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, (2009). 11001103.Google Scholar
Gotelli, N.J. Research frontiers in null model analysis. Global Ecology & Biogeography 10, (2001). 337343.Google Scholar
Graham, R.W., and Lundelius, E.L. Coevolutionary disequilibrium and Pleistocene extinction. Martin, P.S., and Klein, R.G. Quaternary Extinction: A Prehistoric Revolution. (1984). University of Arizona Press, Tucson. 211222.Google Scholar
Graham, R.W., Lundelius, E.L., Graham, M.A., Schroeder, E.K., Toomey, R.S., Anderson, E., Barnosky, A.D., Burns, J.A., Churcher, C.S., Grayson, D.K., Guthrie, R.D., Harington, C.R., Jefferson, G.T., Martin, L.D., McDonald, H.G., Morlan, R.E., Webb, S.D., Webb, S.D., Werdelin, L., and Wilson, M.C. Spatial response of mammals to Late Quaternary environmental fluctuations. Science 14, (1996). 16011606.Google Scholar
Grayson, D.K. Nineteenth-century explanations of Pleistocene extinctions: a review and analysis. Martin, P.S., and Klein, R.G. Quaternary Extinctions: A Prehistoric Revolution. (1984). University of Arizona Press, Tucson. 539.Google Scholar
Grayson, D.K., and Meltzer, D.J. A requiem for North American overkill. Journal of Archaeological Science 30, (2003). 585593.Google Scholar
Grayson, D.K., and Meltzer, D.J. North American overkill continued?. Journal of Archaeological Science 31, (2004). 133136.Google Scholar
Grayson, D. Deciphering North American Pleistocene extinctions. Journal of Anthropological Research 63, (2007). 185213.Google Scholar
Grund, B.S., Surovell, T.A., and Lyons, S.K. Range sizes and shifts of North American Pleistocene mammals are not consistent with a climatic explanation for extinction. World Archaeology 44, (2012). 4355.Google Scholar
Guthrie, R.D. Rapid size decline in Alaskan Pleistocene horse before extinction. Nature 426, (2003). 169171.Google Scholar
Haynes, G. Estimates of Clovis-Era megafaunal populations and their extinction risks. Haynes, G. American Megafaunal Extinctions at the End of the Pleistocene. (2009). Springer Science, Reno. 3954.Google Scholar
Isaac, J.L. Effects of climate change on life history: implications for extinction risk in mammals. Endangered Species Research 7, (2009). 115123.Google Scholar
IUCN IUCN Red List of Threatened Species Version 2011. (2, available at: <) http://www.iucnredlist.org (2011). (/>. Downloaded on 24 April 2012) .+Downloaded+on+24+April+2012)>Google Scholar
Jablonski, D. Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics 39, (2008). 501524.Google Scholar
Jansson, R., and Dynesius, M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics 33, (2002). 741747.Google Scholar
Johnson, C.N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proceedings of the Royal Society B 269, (2002). 22212227.Google Scholar
Jones, K.E., Blackburn, T.M., and Isaac, N.J.B. Can unified theories of biodiversity explain mammalian macroecological patterns?. Philosophical Transactions of the Royal Society B 366, (2011). 22542563.Google Scholar
Kelt, D.A., and Van Vuren, D.H. The ecology and macroecology of mammalian home range area. The American Naturalist 157, (2001). 637645.Google Scholar
Koch, P.L., and Barnosky, A.D. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, (2006). 215250.Google Scholar
Koenker, R. quantreg: Quantile Regression. R package version 4.79. http://CRAN.R-project.org/package=quantreg (2012). Google Scholar
Lima-Ribeiro, M.S., and Diniz-Filho, J.A.F. American megafaunal extinctions and human arrival: an improved evaluation using a meta-analytical approach. Quaternary International 299, (2013). 3852.Google Scholar
Lima-Ribeiro, M.S., and Diniz-Filho, J.A.F. Insistence on narrative reviews or preference for overkill hypothesis? Re-analyses show no evidence against Lima-Ribeiro & Diniz-Filho's conclusions. Quaternary International 308–309, (2013). 278281.Google Scholar
Lima-Ribeiro, M.S., Nogués-Bravo, D., Marske, K.A., Fernandez, F.A.S., Araujo, B., and Diniz-Filho, J.A.F. Human arrival scenarios have a strong influence on interpretations of the late Quaternary extinctions. Proceedings of the National Academy of Sciences USA 109, (2012). e2409e2410.Google Scholar
Lima-Ribeiro, M.S., Varela, S., Nogués-Bravo, D., and Diniz-Filho, J.A.F. Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling. Natureza & Conservação 10, (2012). 145151.Google Scholar
Lima-Ribeiro, M.S., Nogués-Bravo, D., Terribile, L.C., Persaram, B., and Diniz-Filho, J.A.F. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography Palaeoclimatology Palaeoecology 392, (2013). 546556.Google Scholar
Lister, A.M. The impact of Quaternary ice ages on mammalian evolution. Philosophical Transactions of the Royal Society B 359, (2004). 221241.Google Scholar
Lorenzen, E.D., Nogués-Bravo, D., Orlando, L., Weinstock, J., Binladen, J., Marske, K.A., Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen, R., Ho, S.Y.W., Goebel, T., Graf, K.E., Byers, D., Stenderup, J.T., Rasmussen, M., Campos, P.F., Leonard, J.A., Koepfli, K.-P., Froese, D., Zazula, G., Stafford, T.W. Jr., Aaris-Sørensen, K., Batra, P., Haywood, A.M., Singarayer, J.S., Valdes, P.J., Boeskorov, G., Burns, J.A., Davydov, S.P., Haile, J., Jenkins, D.L., Kosintsev, P., Kuznetsova, T., Lai, X., Martin, L.D., McDonald, H.G., Mol, D., Meldgaard, M., Munch, K., Stephan, E., Sablin, M., Sommer, R.S., Sipko, T., Scott, E., Suchard, M.A., Tikhonov, A., Willerslev, R., Wayne, R.K., Cooper, A., Hofreiter, M., Sher, A., Shapiro, B., Rahbek, C., and Willerslev, E. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, (2011). 359365.Google Scholar
Lyons, S.K. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84, (2003). 385402.Google Scholar
Lyons, S.K., and Smith, F.A. Using a macroecological approach to study geographic range, abundance and body size in the fossil record. Alroy, J., and Hunt, G. Quantitative methods in paleobiology. The paleontological society. (2010). 117141.Google Scholar
Lyons, S.K., Wagner, P.J., and Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philosophical Transactions of the Royal Society B 365, (2010). 36813693.Google Scholar
Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology. 3rd edition (2007). Chapman & Hall/CRC, Boca Raton.Google Scholar
Marshall, L.G. Extinction. Myers, A.A., and Giller, P.S. Analytical Biogeography. (1988). Chapman & Hall, London. 219254.Google Scholar
Martin, P.S. Prehistoric overkill. Martin, P.S., Wright, H.E. Jr. Pleistocene Extinction: The Search for a Cause. (1967). Yale University Press, New Haven. 75120.Google Scholar
Martin, P.S. The discovery of America: the first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science 179, (1973). 969974.Google Scholar
Martin, P.S. Prehistoric overkill: the global model. Martin, P.S., and Klein, R.G. Quaternary Extinctions: A Prehistoric Revolution. (1984). University of Arizona Press, Tucson. 354403.Google Scholar
Martínez-Meyer, E., Peterson, A.T., and Hargrove, W.W. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13, (2004). 305314.Google Scholar
Maurer, B.A., Brown, J.H., and Rusler, R. The micro and macro in body size evolution. Evolution 46, (1992). 939953.Google Scholar
Maurer, B.A., Brown, J.H., Dayan, T., Enquist, B.J., Ernest, S.K.M., Hadly, E.A., Haskell, J.P., Jablonski, D., Jones, K.E., Kaufman, D.M., Lyons, S.K., Niklas, K.J., Porter, W.P., Roy, K., Smith, F.A., Tiffney, B., and Willig, M.R. Similarities in body size distributions of small-bodied flying vertebrates. Evolutionary Ecology Research 6, (2004). 783797.Google Scholar
Mayr, E. Change of genetic environment and evolution. Huxley, J., and Hardy, A.C. Evolution as a Process. (1954). Allen and Unwin, London. 157180.Google Scholar
Meltzer, D.J. Pleistocene overkill and the associational critique. Journal of Archaeological Science 13, (1986). 5160.Google Scholar
Metcalf, J.L., Prost, S., Nogués-Bravo, D., DeChaine, E.G., Anderson, C., Batra, P., Araújo, M.B., Cooper, A., and Guralnick, R.P. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proceedings of the Royal Society B 281, (2014). 20132782 Google Scholar
Nogués-Bravo, D. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18, (2009). 521531.Google Scholar
Nogués-Bravo, D., Rodrígues, J., Hortal, J., Batra, P., and Araújo, M. Climate change, humans, and the extinction of the Woolly Mammoth. PLoS Biology 6, (2008). 685692.Google Scholar
Nogués-Bravo, D., Ohlemüller, R., Batra, P., and Araújo, M.B. Climate predictors of late quaternary extinctions. Evolution 64, (2010). 24422449.Google Scholar
O'Regan, H.J., Turner, A., and Wilkinson, D.M. European Quaternary refugia: a factor in large carnivore extinction?. Journal of Quaternary Science 17, (2002). 789795.Google Scholar
Pereira, H.M., Leadley, P.W., Proença, V., Alkemade, R., Scharlemann, J.P.W., Fernandez-Manjarrés, J.F., Araújo, M.B., Balvanera, P., Biggs, R., Cheung, W.W.L., Chini, L., Cooper, H.D., Gilman, E.L., Guénette, S., Hurtt, G.C., Huntington, H.P., Mace, G.M., Oberdorff, T., Revenga, C., Rodrigues, P., Scholes, R.J., Sumaila, U.R., and Walpole, M. Scenarios for global biodiversity in the 21st Century. Science 330, (2010). 14961501.Google Scholar
Peters, R.H. The Ecological Significance of Body Size. (1983). Cambridge University Press, Cambridge.Google Scholar
Prescott, G.W., Williams, D.R., Balmford, A., Green, R.E., and Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proceedings of the National Academy of Sciences USA 109, (2012). 45274531.Google Scholar
Purvis, A., Gittleman, J.L., Cowlishaw, G., and Mace, G.M. Predicting extinction risk in declining species. Proceedings of the Royal Society B 267, (2000). 19471952.Google Scholar
R Development Core Team R: a language and environment for statistical computing. (2011). R Foundation for Statistical Computing, Vienna, Austria. 3-900051-07-0 (available at: <http://www.r-project.org>))>Google Scholar
Raia, P., Passaro, F., Fulgione, D., and Carotenuto, F. Habitat tracking, stasis and survival in Neogene large mammals. Biology Letters 8, (2012). 6466.Google Scholar
Rawlence, N.J., Metcalf, J.L., Wood, J.R., Worthy, T.H., Austin, J.J., and Cooper, A. The effect of climate and environmental change on the megafaunal moa of New Zealand in the absence of humans. Quaternary Science Reviews 50, (2012). 141153.Google Scholar
Robinson, G.S., Burney, L.P., and Burney, D.A. Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecological Monographs 75, (2005). 295315.Google Scholar
Scharf, F.S., Juanes, F., and Sutherland, M. Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79, (1998). 448460.Google Scholar
Scott, E. Extinctions, scenarios, and assumptions: changes in latest Pleistocene large herbivore abundance and distribution in western North America. Quaternary International 217, (2010). 225239.Google Scholar
Sexton, J.P., McIntyre, P.J., Angert, A.L., and Rice, K.J. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics 40, (2009). 415436.Google Scholar
Silva, M., and Downing, J.A. The allometric scaling of density and body mass: a nonlinear relationship for terrestrial mammals. American Naturalist 145, (1995). 704727.Google Scholar
Simberloff, D. The proximate causes of extinction. Raup, D.M., and Jablonski, D. Patterns and Processes in the History of Life. (1986). Springer, Berlin. 259276.Google Scholar
Smith, F.A., Betancourt, J.L., and Brown, J.H. Evolution of body size in the woodrat over the past 25.000 years of climate change. Science 270, (1995). 20122014.Google Scholar
Smith, F.A., Lyons, S.K., Ernest, S.K.M., Jones, K.E., Kaufman, D.M., Dayan, T., Marquet, P.A., Brown, J.H., and Haskell, J.P. Body mass of Late Quaternary mammals. Ecology 84, (2003). 3403 Google Scholar
Smith, F.A., Boyer, A.G., Brown, J.H., Costa, D.P., Dayan, T., Ernest, S.K.M., Evans, A.R., Fortelius, M., Gittleman, J.L., Hamilton, M.J., Harding, L.E., Lintulaakso, K., Lyons, S.K., McCain, C., Okie, J.G., Saarinen, J.J., Sibly, R.M., Stephens, P.R., Theodor, J., and Uhen, M.D. The evolution of maximum body size of terrestrial mammals. Science 330, (2010). 12161219.Google Scholar
Smith, F.A., and Lyons, S.K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Philosophical Transactions of the Royal Society B - Biological Sciences 366, (2011). 23642378.Google Scholar
Soulé, M.E., and Wilcox, B.A. Conservation Biology, an Evolutionary-Ecological Perspective. (1980). Sinauer Associates, Sunderland.Google Scholar
Stewart, J.R., Lister, A.M., Barnes, I., and Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society B 277, (2010). 661671.Google Scholar
Surovell, T.A., and Waguespack, N. How many elephant kills are 14? Clovis mammoth and mastodon kills in context. Quaternary International 191, (2008). 82e97 Google Scholar
Surovell, T.A., and Grund, B.S. The associational critique of quaternary overkill and why it is largely irrelevant to the extinction debate. American Antiquity 77, (2012). 673688.Google Scholar
Svenning, J.-C., Flojgaard, C., Marske, K.A., Nogués-Bravo, D., and Normand, S. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews 30, (2011). 29302947.Google Scholar
Thomson, J.D., Weiblen, G., Thomson, B.A., Alfaro, A., and Legendre, P. Untangling multiple factors in spatial distributions. Ecology 77, (1996). 16981715.Google Scholar
Varela, S., Lobo, J.M., Rodríguez, J., and Batra, P. Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quaternary Science Reviews 29, (2010). 20272035.Google Scholar
Varela, S., Lobo, J.M., and Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeography Palaeoclimatology Palaeoecology 310, (2011). 451463.Google Scholar
Wroe, S., Field, J., Fullagard, R., and Jermiin, L.S. Megafaunal extinction in the late Quaternary and the global overkill hypothesis. Alcheringa 28, (2004). 291331.Google Scholar
Wroe, S., Field, J., Archer, M., Grayson, D.K., Price, G.J., Louys, J., Faith, J., Webb, G.E., Davidson, I., and Mooney, S.D. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proceedings of the National Academy of Sciences 110, (2013). 87778781.Google Scholar
Supplementary material: File

Lima-Ribeiro et al. supplementary material

Appendix S1

Download Lima-Ribeiro et al. supplementary material(File)
File 87.6 KB