Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T00:10:05.117Z Has data issue: false hasContentIssue false

Climate variability in the Spanish Pyrenees during the last 30,000 yr revealed by the El Portalet sequence

Published online by Cambridge University Press:  20 January 2017

P. González-Sampériz*
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Avda. Montañana 1005, 50059 Zaragoza, Spain
B.L. Valero-Garcés
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Avda. Montañana 1005, 50059 Zaragoza, Spain
A. Moreno
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Avda. Montañana 1005, 50059 Zaragoza, Spain
G. Jalut
Affiliation:
LADYBIO Univ. Paul Sabatier-UMR 5172, 29 rue Jeanne Marvig, 31055 Toulouse, France
J.M. García-Ruiz
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Avda. Montañana 1005, 50059 Zaragoza, Spain
C. Martí-Bono
Affiliation:
Instituto Pirenaico de Ecología, CSIC, Avda. Montañana 1005, 50059 Zaragoza, Spain
A. Delgado-Huertas
Affiliation:
Estación Experimental de El Zaidín, CSIC, C/ Albareda 1, 18008 Granada, Spain
A. Navas
Affiliation:
Estación Experimental Aula Dei, CSIC, Avda. Montañana 1005, Apdo 202, 50080 Zaragoza, Spain
T. Otto
Affiliation:
LADYBIO Univ. Paul Sabatier-UMR 5172, 29 rue Jeanne Marvig, 31055 Toulouse, France
J.J. Dedoubat
Affiliation:
LADYBIO Univ. Paul Sabatier-UMR 5172, 29 rue Jeanne Marvig, 31055 Toulouse, France
*
Corresponding author. Fax: +34 976 716019. E-mail address:pgonzal@ipe.csic.es (P. Gonz�lez-Samp�riz).

Abstract

Palynological, sedimentological and stable isotopic analyses of carbonates and organic matter performed on the El Portalet sequence (1802 m a.s.l., 42°48′00ʺN, 0°23′52ʺW) reflect the paleoclimatic evolution and vegetation history in the central-western Spanish Pyrenees over the last 30,000 yr, and provide a high-resolution record for the late glacial period. Our results confirm previous observations that deglaciation occurred earlier in the Pyrenees than in northern European and Alpine sites and point to a glacial readvance from 22,500 to 18,000 cal yr BP, coinciding with the global last glacial maximum. The patterns shown by the new, high-resolution pollen data from this continental sequence, chronologically constrained by 13 AMS 14C dates, seem to correlate with the rapid climate changes recorded in Greenland ice cores during the last glacial–interglacial transition. Abrupt events observed in northern latitudes (Heinrich events 3 to 1, Oldest and Older Dryas stades, Intra-Allerød Cold Period, and 8200 cal yr BP event) were also identified for the first time in a lacustrine sequence from the central-western Pyrenees as cold and arid periods. The coherent response of the vegetation and the lake system to abrupt climate changes implies an efficient translation of climate variability from the North Atlantic to mid latitudes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J., Huntley, B., and Watts, W. The vegetation and climate of the northwest Iberia over the last 14.000 yr. Journal of Quaternary Science 11, (1996). 125147.3.0.CO;2-U>CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, (1997). 483486.2.3.CO;2>CrossRefGoogle Scholar
Andrieu, V., Hubschman, J., Jalut, G., and Herail, G. Chronologie de la déglaciation des Pyrénées francaises. Dynamique de sédimentation et contenu pollinique des paléolacs: application á l'interprétation du retrait glaciaire. Bulletin A.F.E.Q. 2/3, (1988). 5567.Google Scholar
Bahr, A., Lamy, F., Arz, H.W., Kuhlmann, H., and Wefer, G. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology 214, (2005). 309322.CrossRefGoogle Scholar
Bard, E., Rostek, F., and Ménot-Combes, G. A better radiocarbon clock. Science 303, (2004). 178179.Google Scholar
Bennet, K. Documentation for Psimpoll 4.10 and Pscomb 1.03. C Programs for Plotting Pollen Diagrams and Analysing Pollen Data. (2002). University of Cambridge, Cambridge.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L., Johnsen, S.J., Knudsen, K.-L., Lowe, J.J., Wohlfarth, B., and Group, I. An event sratigraphy for the last termination in the North Atlantic based on the Greenland Ice core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, (1998). 283292.3.0.CO;2-A>CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., Priore, P., de Menocal, P., Cullen, H., Hajdas, I., and Bonani, G. A pervasive millenial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, (1997). 12571266.CrossRefGoogle Scholar
Brown, T., Nelson, D., Mathewes, R., Vogel, J., and Sonthon, J. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32, (1989). 205212.Google Scholar
Cacho, I., Grimalt, J.O., Canals, M., Sbaffi, L., Shackleton, N.J., Schönfeld, J., and Zahn, R. Variability of the Western Mediterranean sea surface temperatures during the last 25,000 years and its connection with the northern hemisphere climatic changes. Paleoceanography 16, (2001). 4052.Google Scholar
Camarero, J., Guerrero, J., and Gutiérrez, E. Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arctic and Alpine Research vol. 30 (1), (1998). 110.CrossRefGoogle Scholar
Carrión, J.S., and van Geel, B. Fine-resolution Upper Weichselian and Holocene palynological record from Navarrés (Valencia, Spain) and a discussion about factors of Mediterranean forest succession. Review of Palaeobotany and Palynology 106, (1999). 209236.Google Scholar
Combourieu Nebout, N., Turon, J.L., Zahn, R., Capotondi, L., Londeix, L., and Pahnke, K. Enhanced aridity and atmospheric high-pressure stability over the western Mediterranean during the North Atlantic cold events of the past 50 k.y.. Geology 30, (2002). 863866.Google Scholar
García, D., Zamora, R., Gómez, J., and Hodar, J. Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: relationship to seed predation and weather. Ecosciences 9, 2 (2002). 251255.Google Scholar
García-Ruiz, J.M., Valero-Garcés, B., González-Sampériz, P., Lorente, A., Martí Bono, C., Beguería, S., and Edwards, L. Stratified screes in the Central Spanish Pyrenees: paleoclimatic implications. Permafrost and Periglacial Processes 12, (2001). 233242.CrossRefGoogle Scholar
García-Ruiz, J.M., Valero-Garcés, B.L., Martí-Bono, C., and González-Sampériz, P. Asynchroneity of maximum glacier advances in the central Spanish Pyrenees. Journal of Quaternary Science 18, (2003). 6172.Google Scholar
González-Sampériz, P., Valero-Garcés, B., Carrión, J., Peña-Monné, JL., García-Ruiz, J.M., and Martí-Bono, C. Glacial and late glacial vegetation in Northeastern Spain: new data and a review. Quaternary International 140–141, (2005). 420.Google Scholar
Griffiths, S.J., Street-Perrot, F.A., Holmes, J.A., Leng, M.J., and Tzedakis, C. Chemical and isotopic composition of modern water bodies in the Lake Kopais Basin, central Greece: analogues for the interpretation of the lacustrine sedimentary sequence. Sedimentary Geology 148, (2002). 79103.CrossRefGoogle Scholar
Guiter, F., Triganon, A., Andrieu-Ponel, V., Ponel, P., Hébrard, J.-P., Nicoud, G., Brewer, J.-L., de Beaulieu, S., and Guibal, F. First evidence of "in situ" Eemian sediments on the high plateau of Evian (Northern Alps, France): implications for the chronology of the Last Glaciation. Quaternary Science Reviews 24, (2005). 3547.CrossRefGoogle Scholar
Jalut, G., Serrat, D., Vilaplana, J., and Andrieu, V. Last glaciation and deglaciation in the Pyrenees. Abstract, biennial Meeting of the European Union of Geosciences, EUG V, 20–23 March. (1989). EUG, Strasbourg. 6667.Google Scholar
Jalut, G., Montserrat, J., Fontugne, M., Delibrias, G., Vilaplana, J., and Julià, R. Glacial to Interglacial vegetation changes in the northern and southern Pyrenees: deglaciation, vegetation cover and chronology. Quaternary Science Reviews 11, (1992). 449480.CrossRefGoogle Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N.S., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdóttir, A.E., and White, J. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: camp century, dye-3, GRIP, GISP2, renland and NorthGRIP. Journal of Quaternary Sciences 16, (2001). 299307.Google Scholar
Leng, M., and Marshall, J.D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews 23, (2004). 811831.CrossRefGoogle Scholar
Magri, D., and Parra, I. Late Quaternary western Mediterranean pollen records and African winds. Earth and Planetary Science Letters 200, (2002). 401408.Google Scholar
Magri, D. Late Quaternary vegetation history at Lagacione near Lago di Bolsena (central Italy). Review of Palaeobotany and Palynology 106, (1999). 171208.Google Scholar
McKenzie, J.A. Carbon isotopes and productivity in the lacustrine and marine environment. Stumm, W. Chemical Processes in Lakes. (1985). Wiley, New York. 99118.Google Scholar
Meyers, P.A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, (2003). 261289.CrossRefGoogle Scholar
Meyers, P.A., and Lallier-Vergès, E. Lacustrine sedimentary organic matter records of late quaternary paleoclimates. Journal of Paleolimnology 21, (1999). 345 CrossRefGoogle Scholar
Montjuvent, G., and Nicoud, G. Modalités et chronologie de la déglaciation würmienne dans l'arc alpin occidental et les massifs français: synthèse et réflections. Bulletin de l' Association Française pour l' Etude du Quaternaire 2/3, (1988). 147156.CrossRefGoogle Scholar
Montserrat, J., (1992). Evolución glaciar y postglaciar del clima y la vegetación en la vertiente sur del Pirineo: estudio palinológico. Monografías del Instituto Pirenaico de Ecología-CSIC, Zaragoza., 147 pp.Google Scholar
Moore, P., Webb, J.A., and Collinson, A. An Illustrated Guide to Pollen Analysis. (1991). Hodder and Stroughton, London. 216 pp. Google Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez-Goñi, M.F., Grimalt, J.O., and Weltje, G.J. Saharan dust transport and high latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, (2002). 318328.CrossRefGoogle Scholar
Pérez-Obiol, R., and Julià, R. Climate change on the Iberian Peninsula recorded in a 30.000 yr pollen record from Lake Banyoles. Quaternary Research 41, (1994). 9198.Google Scholar
Pons, A., and Reille, M. The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, (1988). 243263.Google Scholar
Prentice, I.C., Guiot, J., and Harrison, S.P. Mediterranean vegetation, lake levels and palaeoclimate at the Last Glacial Maximum. Nature 360, (1992). 658660.CrossRefGoogle Scholar
Pujol, C., and Vergnaud-Grazzini, C. Paleoceanography of the Last Deglaciation in the Alboran Sea (Western Mediterranean). Stable isotopes and planktonic foraminiferal records. Marine Micropaleontology 15, (1989). 153179.CrossRefGoogle Scholar
Reille, M., and Lowe, J.L. A re-evaluation of the vegetation history of the eastern Pyrenees (France) from the end of the last glacial to the present. Quaternary Science Reviews 12, (1993). 4777.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Weyhenmeyer, J., and van der Plicht, C.E. IntCal04. Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Roucoux, K.H., Abreu, L., Tzedakis, N., and de Shackleton, T. The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65 kyr. Quaternary Science Reviews 24, (2005). 16371653.CrossRefGoogle Scholar
Ruddiman, W., and McIntyre, A. The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeocology 35, (1981). 145214.CrossRefGoogle Scholar
Sánchez-Goñi, M.F., Cacho, I., Turon, J.L., Guiot, J., Sierro, F.J., Peypouquet, J.-P., Grimalt, J.O., and Shackleton, N.J. Synchroneity between marine and terrestrial responses to millennial scale climatic variability during the last glacial period in the Mediterranean region. Climate Dynamics 19, (2002). 95105.Google Scholar
Sancho, C., Peña-Monné, J.L., Lewis, C., McDonald, E., and Rhodes, E. Preliminary dating of glacial and fluvial deposits in the Cinca river Valley (NE Spain): chronological evidences for the Glacial Maximum in the Pyrenees?. Ruiz-Zapata, B., Dorado-Valiño, M., Valdeomillos, A., Gil-García, M.J., Bardají, T., Bustamante, I., and Mendizábal, I. Quaternary Climatic Changes and Environmental Crises in the Mediterranean Region. (2003). Alcalá de Henares, Madrid. 169174.Google Scholar
Sangiorgi, F., Capotondi, L., and Brinkhuis, H. A centennial scale orgain-walled dinoflagellate cyst record of the last deglaciation in the South Adriatic Sea (Central Mediterranean). Palaeogeography, Palaeoclimatology, Palaeoecology 186, (2002). 199216.Google Scholar
Seret, G., Dricot, E., and Wansard, G. Evidence for an early glacial maximum in the French Vosges during the last glacial cycle. Nature 346, (1990). 453456.CrossRefGoogle Scholar
Stockmarr, J. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, (1971). 614621.Google Scholar
Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopes in primary lacustrine carbonates. Chemical Geology 80, (1990). 261279.Google Scholar
Turon, J.L., Lézine, A.M., and Denèfle, M. Land–sea correlations for the last glaciation inferred from a pollen and dinocyst record from the Portuguese margin. Quaternary Research 59, (2003). 8896.CrossRefGoogle Scholar
Tzedakis, P.C., McManus, J., Hooghiemstra, H., Oppo, D., and Wijmstra, T.A. Comparison of changes in vegetation in northeast Greece with records of climate variability on orbital and suborbital frequencies over the last 450 000 years. Earth and Planetary Science Letters 212, (2003). 197212.CrossRefGoogle Scholar
Valero-Garcés, B.L., Zeroual, E., and Kelts, K. Arid phases in the western Mediterranean region during the last glacial cycle reconstructed from lacustrine records. Benito, G., Baker, V.R., and Gregory, K.J. Paleohydrology and Environmental Change. (1998). 6780.Google Scholar
Valero-Garcés, B., González-Sampériz, P., Delgado-Huertas, A., Navas, A., Machín, J., and Kelts, K. Late glacial and Late Holocene environmental vegetational change in Salada Mediana, central Ebro Basin. Spain. Quaternary International 73/74, (2000). 2946.CrossRefGoogle Scholar