Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T20:29:21.707Z Has data issue: false hasContentIssue false

Approaches and challenges to the study of loess—Introduction to the LoessFest Special Issue

Published online by Cambridge University Press:  11 May 2018

Randall J. Schaetzl
Affiliation:
Department of Geography, Environment, and Spatial Sciences, 673 Auditorium Rd., Michigan State University, East Lansing, Michigan 48824-1117, USA
E. Arthur Bettis III*
Affiliation:
Department of Earth and Environmental Sciences, IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa 52242, USA
Onn Crouvi
Affiliation:
Geological Survey of Israel, Jerusalem 9550161, Israel
Kathryn E. Fitzsimmons
Affiliation:
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
David A. Grimley
Affiliation:
Illinois State Geological Survey, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
Ulrich Hambach
Affiliation:
BayCEER and Chair of Geomorphology, University of Bayreuth, 95447 Bayreuth, Germany
Frank Lehmkuhl
Affiliation:
Department of Geography, RWTH Aachen University, Templergraben 55, 52066 Aachen, Germany
Slobodan B. Marković
Affiliation:
Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia Serbian Academy of Sciences and Arts Knez Mihajlova 35, 11000 Belgrade, Serbia
Joseph A. Mason
Affiliation:
Department of Geography, University of Wisconsin-Madison, 550 N. Park St., Madison, Wisconsin 53706, USA
Piotr Owczarek
Affiliation:
Institute of Geography and Regional Development, Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Pl. Uniwersytecki 1, 50-137 Wroclaw, Poland
Helen M. Roberts
Affiliation:
Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, United Kingdom
Denis-Didier Rousseau
Affiliation:
Ecole Normale Supérieure, UMR CNRS 8539, Laboratoire de Météorologie Dynamique, and CERES-ERTI, 24 rue Lhomond, 75231 Paris CEDEX 5, France Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964, USA
Thomas Stevens
Affiliation:
Physical Geography, Program for Air, Water and Landscape Sciences, Department of Earth Sciences, Uppsala University, Villav. 16, SE-751 05 Uppsala, Sweden
Jef Vandenberghe
Affiliation:
Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
Marcelo Zárate
Affiliation:
Instituto de Ciencias de la Tierra y Ambientales de la Pampa (CONICET-UNLPam). Avenida Uruguay 151, 6300 La Pampa Argentina
Daniel Veres
Affiliation:
Institute of Speleology, Romanian Academy, 050711 Bucharest, Romania Interdisciplinary Research Institute on Bio-Nano-Science of Babes-Bolyai University, Cluj-Napoca 400084, Romania
Shiling Yang
Affiliation:
Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 BeiTuChengXi Road, Beijing 100029, China
Michael Zech
Affiliation:
Institute of Geography, Technical University of Dresden, Helmholtzstrasse 10, D-01062 Dresden, Germany Department of Terrestrial Biogeochemistry, Martin-Luther University Halle-Wittenberg, Weidenplan 14, D-06120 Halle, Germany
Jessica L. Conroy
Affiliation:
Departments of Geology and Plant Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA
Aditi K. Dave
Affiliation:
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Dominik Faust
Affiliation:
Institute of Geography, Technical University of Dresden, Helmholtzstrasse 10, D-01062 Dresden, Germany
Qingzhen Hao
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, and College of Earth Science, University of Chinese Academy of Sciences, 100029, Beijing, China
Igor Obreht
Affiliation:
Department of Geography, RWTH Aachen University, Templergraben 55, 52066 Aachen, Germany Organic Geochemistry Group, MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, 28359 Bremen, Germany
Charlotte Prud’homme
Affiliation:
Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
Ian Smalley
Affiliation:
School of Geology, Geography and the Environment, University of Leicester, Leicester LE1 7RH, United Kingdom
Alfonsina Tripaldi
Affiliation:
IGEBA-CONICET-Universidad de Buenos Aires Pabellón 2, Primer piso, Oficina 3, Ciudad Universitaria C1428EHA, Buenos Aires, Argentina
Christian Zeeden
Affiliation:
Department of Geography, RWTH Aachen University, Templergraben 55, 52066 Aachen, Germany IMCCE, Observatoire de Paris, PSL Research Université, CNRS, Sorbonne Universités, UPMC Université Paris 06, Université Lille, 75014 Paris, France
Roland Zech
Affiliation:
Institute of Geography, Friedrich-Schiller University Jena, Löbdergraben 32, D-07743 Jena, Germany
*
*Corresponding author at: Department of Earth and Environmental Sciences, IIHR–Hydroscience and Engineering, University of Iowa, Iowa City, Iowa 52242, USA. E-mail address: art-bettis@uiowa.edu (E.A. Bettis III).

Abstract

In September 2016, the annual meeting of the International Union for Quaternary Research’s Loess and Pedostratigraphy Focus Group, traditionally referred to as a LoessFest, met in Eau Claire, Wisconsin, USA. The 2016 LoessFest focused on “thin” loess deposits and loess transportation surfaces. This LoessFest included 75 registered participants from 10 countries. Almost half of the participants were from outside the United States, and 18 of the participants were students. This review is the introduction to the special issue for Quaternary Research that originated from presentations and discussions at the 2016 LoessFest. This introduction highlights current understanding and ongoing work on loess in various regions of the world and provides brief summaries of some of the current approaches/strategies used to study loess deposits.

Keywords

Type
Review Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abazow, R, 2008. Palgrave Concise Historical Atlas of Central Asia. Palgrave Macmillan, New York.Google Scholar
Akram, H., Yoshida, M., Ahmad, M.N., 1998. Rock magnetic properties of the late Pleistocene loess-paleosol deposits in Haro River area, Attock Basin, Pakistan: is magnetic susceptibility a proxy measure of paleoclimate? Earth, Planets and Space 50, 129139.CrossRefGoogle Scholar
Aleinikoff, J.N., Muhs, D.R., Bettis, E.A. III, Johnson, W.C., Fanning, C.M., Benton, R., 2008. Isotopic evidence for the diversity of late Quaternary loess in Nebraska: glaciogenic and nonglaciogenic sources. Geological Society of America Bulletin 120, 13621377.Google Scholar
Aleinikoff, J.N., Muhs, D.R., Saner, R.R., Fanning, C.M., 1999. Late Quaternary loess in northeastern Colorado: Part II—Pb isotopic evidence for the variability of loess sources. Geological Society of America Bulletin 111, 18761883.Google Scholar
Allan, R.J., Hole, F.D., 1968. Clay accumulation in some Hapludalfs as related to calcareous till and incorporated loess on drumlins in Wisconsin. Soil Science Society of America Proceedings 32, 403408.Google Scholar
Amit, R., Enzel, Y., Crouvi, O., 2016. Distance-impacted grain size of loess and dust result in the formation of diverse soil types around the Mediterranean. Geological Society of America, Abstracts with Programs 48. http://dx.doi.org/10.1130/abs/2016AM-282202.Google Scholar
An, Z., Kukla, G.J., Porter, S.C., Xiao, J., 1991a. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 2936.CrossRefGoogle Scholar
An, Z.S., Kukla, G., Porter, S.C., Xiao, J.L., 1991b. Late Quaternary dust flow on the Chinese Loess Plateau. Catena 18, 125132.Google Scholar
Andersson, J.G., 1934. Children of the Yellow Earth. Kegan Paul, Trench, Trubner, London.Google Scholar
Ankjærgaard, C., Guralinik, B., Buylaert, J.-P., Reimann, T., Yi, S.W., Wallinga, J., 2016. Violet stimulated luminescence dating of quartz from Luochuan (Chinese Loess Plateau): agreement with independent chronology up to ~600 ka. Quaternary Geochronology 34, 3346.Google Scholar
Antoine, P., Catt, J., Lautridou, J.-P., Sommé, J., 2003. The loess and coversands of northern France and southern England. Journal of Quaternary Sciences 18, 309318.Google Scholar
Antoine, P., Coutard, S., Guerin, G., Deschodt, L., Goval, E., Locht, J-L., Paris, C., 2016. Upper Pleistocene loess-palaeosol records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quaternary International 411, 424.Google Scholar
Antoine, P., Rousseau, D-D., Zoller, L., Lang, A., Munaut, A-V., Hatte, C., Fontugne, M., 2001. High-resolution record of the last glacial-interglacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76–77, 211229.Google Scholar
Antoine, P., Rousseau, D.-D., Degeai, J.-P., Moine, O., Lagroix, F., Kreutzer, S., Fuchs, M., Hatté, C., Gauthier, C., Svoboda, J., Lisá, L., 2013. High-resolution record of the environmental response to climatic variations during the Last Interglacial–Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolní Věstonice (Czech Republic). Quaternary Science Reviews 67, 1738.CrossRefGoogle Scholar
Antoine, P., Rousseau, D.-D., Moine, O., Kunesch, S., Hatté, C., Lang, A., Tissoux, H., Zöller, L., 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28, 29552973.Google Scholar
Assallay, A.M., Rogers, C.D.F., Smalley, I.J., Jefferson, I.F., 1998. Silt: 2-62 micron, 9-4 phi. Earth-Science Reviews 45, 6188.Google Scholar
Aubekerov, B.J., 1993. Stratigraphy and Paleogeography of the Plain Zones of Kazakhstan during the Late Pleistocene and Holocene. In: Velichko, A.A (Ed.) Development of Landscape and Climate of Northern Asia, Late Pleistocene and Holocene. [In Russian.] Nauka, Moscow, pp. 101110.Google Scholar
Auclair, M., Lamothe, M., Lagroix, F., Banerjee, S.K., 2007. Luminescence investigation of loess and tephra from Halfway House section, central Alaska. Quaternary Geochronology 2, 3438.CrossRefGoogle Scholar
Avni, Y., 2005. Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 63, 185220.Google Scholar
Avni, Y., Porat, N., Plakht, J., Avni, G., 2006. Geomorphic changes leading to natural desertification versus anthropogenic land conservation in an arid environment, the Negev Highlands, Israel. Geomorphology 82, 177200.Google Scholar
Bagnold, R., 1941. The Physics of Blown Sand and Desert Dunes. Chapman and Hall, London.Google Scholar
Bai, Y., Fang, X., Nie, J., Wang, Y., Wu, F., 2009. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers. Palaeogeography, Palaeoclimatology, Palaeoecology 271, 161169.Google Scholar
Baker, F.C., 1931. Pulmonate mollusca peculiar to the Pleistocene period, particularly the loess deposits. Journal of Paleontology 5, 270292.Google Scholar
Balakrishnan, M., Yapp, C.J., 2004. Flux balance models for the oxygen and carbon isotope compositions of land snail shells. Geochimica Cosmochimica Acta 68, 20072024.Google Scholar
Balco, G., Stone, J.O.H., Mason, J.A., 2005. Numerical ages for Plio-Pleistocene glacial sediment sequences by Al-26/Be-10 dating of quartz in buried paleosols. Earth and Planetary Science Letters 232, 179191.Google Scholar
Banak, A., Mandic, O., Sprovieri, M., Lirer, F., Pavelić, D., 2016. Stable isotope data from loess malacofauna: evidence for climate changes in the Pannonian Basin during the Late Pleistocene. Quaternary International 415, 1524.Google Scholar
Basarin, B., Buggle, B., Hambach, U., Marković, S.B., Dhand, K.O., Kovačević, A., Stevens, T., Guo, Z., Lukić, T., 2014. Time-scale and astronomical forcing of Serbian loess-palaeosol sequences. Global and Planetary Change 122, 89106.Google Scholar
Basarin, B., Vandenberghe, D.A.G., Marković, S.B., Catto, N., Hambach, U., Vasiliniuc, S., Derese, C., Rončević, S., Vasiljević, D.A., Rajić, L., 2009. The Belotinac section (southern Serbia) at the southern limit of the European loess belt: initial results. Quaternary International 240, 128138.Google Scholar
Bateman, M.D., 1998. The origin and age of coversand in north Lincolnshire, UK. Permafrost and Periglacial Processes 9, 313325.3.0.CO;2-P>CrossRefGoogle Scholar
Bateman, M.D., Van Huissteden, J., 1999. The timing of last‐glacial periglacial and aeolian events, Twente, eastern Netherlands. Journal of Quaternary Science 14, 277283.Google Scholar
Baumgart, P., Hambach, U., Meszner, S., Faust, D., 2013. An environmental magnetic fingerprint of periglacial loess: records of Late Pleistocene loess–palaeosol sequences from eastern Germany. Quaternary International 296, 8293.CrossRefGoogle Scholar
Begét, J., 1990. Middle Wisconsinan climate fluctuations recorded in central Alaskan loess. Géographie Physique et Quaternaire 44, 313.Google Scholar
Begét, J., Edwards, M., Hopkins, D., Keskinen, M., Kukla, G., 1991. Old Crow tephra found at the Palisades of the Yukon, Alaska. Quaternary Research 35, 291297.Google Scholar
Begét, J.E., 1996. Tephrochronology and paleoclimatology of the last interglacial-glacial cycle recorded in Alaskan loess deposits. Quaternary International 34–36, 121126.Google Scholar
Begét, J.E., Hawkins, D.B., 1989. Influence of orbital parameters on Pleistocene loess deposition in central Alaska. Nature 337, 151153.CrossRefGoogle Scholar
Begét, J.E., Stone, D.B., Hawkins, D.B., 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the Quaternary. Geology 18, 4043.Google Scholar
Ben Israel, M., Enzel, Y., Amit, R., Erel, Y., 2015. Provenance of the various grain-size fractions in the Negev loess and potential changes in major dust sources to the eastern Mediterranean. Quaternary Research 83, 105115.Google Scholar
Berger, G.W., 2003. Luminescence chronology of late Pleistocene loess-paleosol and tephra sequences near Fairbanks, Alaska. Quaternary Research 60, 7083.Google Scholar
Bertran, P., Bateman, M.D., Hernandez, M., Mercier, N., Millet, D., Sitzia, L., Tastet, J.-P., 2011. Inland aeolian deposits of south-west France: facies, stratigraphy and chronology. Journal of Quaternary Science 26, 374388.Google Scholar
Bertran, P., Liard, M., Sitzia, L., Tissoux, H., 2016. A map of Pleistocene aeolian deposits in western Europe, with special emphasis on France. Journal of Quaternary Sciences 31, 844856.CrossRefGoogle Scholar
Bettis, E.A. III, Muhs, D.R., Roberts, H.M., Wintle, A.G., 2003. Last Glacial loess in the conterminous USA. Quaternary Science Reviews 22, 19071946.Google Scholar
Bird, A., Stevens, T., Rittner, M., Vermeesch, P., Carter, A., Andò, S., Garzanti, E., et al., 2015. Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 435, 254264.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, J., Knudsen, K.L., Lowe, J.J., Wohlfarth, B., 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13/4, 283292.Google Scholar
Bloemendal, J., Liu, X.M., Rolph, T.C., 1995. Correlation of the magnetic-susceptibility stratigraphy of Chinese loess and the marine oxygen-isotope record: chronological and paleoclimatic implications. Earth and Planetary Science Letters 131, 371380.Google Scholar
Bohncke, S., Kasse, C., Vandenberghe, J., 1995. Climate induced environmental changes during the Vistulian Lateglacial at Zabinko, Poland. Quaestiones Geographicae, special issue 4, 43–64.Google Scholar
Bohncke, S., Vandenberghe, J., Huijzer, A.S., 1993. Periglacial environments during the Weichselian Late Glacial in the Maas valley, the Netherlands. Geologie en Mijnbouw 72, 193210.Google Scholar
Boixadera, J., Poch, R.M., Lowick, S.E., Balasch, J.C., 2015. Loess and soils in the eastern Ebro Basin. Quaternary International 376, 114133.CrossRefGoogle Scholar
Bokhorst, M., Vandenberghe, J., Sümegi, P., Lanczont, M., Gerasimenko, N.P., Matviishina, Z.N., Markovic, S.B, Frechen, M., 2011. Atmospheric circulation patterns in central and eastern Europe during the Weichselian Pleniglacial inferred from loess grain-size records. Quaternary International 234, 6274.Google Scholar
Böse, M., 1991. A palaeoclimatic interpretation of frost-wedge casts and aeolian sand deposits in the lowlands between Rhine and Vistula in the Upper Pleniglacial and Late Glacial. Zeitschrift für Geomorphologie 90, 1528.Google Scholar
Bradák, B., Újvári, G., Seto, Y., Hyodo, M., Végh, T., 2018. A conceptual magnetic fabric development model for the Paks loess in Hungary. Aeolian Research 30, 2031.Google Scholar
Breed, C.S., Fryberger, S.G., Andrews, S., McCauley, C., Lennartz, F., Gebel, D., Horstman, K., 1979. Regional studies of sand seas, using Landsat (ERTS) imagery. In: McKee, E.D. (Ed.), A Study of Global Sand Seas. U.S. Geological Survey, Reston, VA, pp. 305397.Google Scholar
Brodie, C., Leng, M., Casford, J., Kendrick, C., Lloyd, J., Yongqiang, Z., Bird, M., 2011. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods. Chemical Geology 282, 6783.Google Scholar
Bronger, A., 1976. Zur quartären Klima- und Landschaftsentwicklung des Karpatenbeckens auf (paläo) pedologischer und bodengeographischer Grundlage. Kieler geographische Schriften 45. Selbstverlag des Geographischen Instituts der Universität Kiel, Kiel, Germany.Google Scholar
Bronger, A., 2003. Correlation of loess-paleosol sequences in East and central Asia with SE central Europe: towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106/107, 1131.CrossRefGoogle Scholar
Bronger, A., Heinkele, T., 1989. Micromorphology and genesis of paleosols in the Luochuan loess section, China: pedostratigraphical and environmental implications. Geoderma 45, 123143.Google Scholar
Bronger, A., Winter, R., Sedov, S., 1998. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan towards a Quaternary paleoclimatic record in central Asia. Catena 34, 1934.Google Scholar
Buggle, B., Glaser, B., Hambach, U., Gerasimenko, N., Marković, S., 2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International 240, 1221.Google Scholar
Buggle, B., Glaser, B., Zöller, L., Hambach, U., Marković, S., Glaser, I., Gerasimenko, N., 2008. Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine). Quaternary Science Reviews 27, 10581075.Google Scholar
Buggle, B., Hambach, U., Glaser, B., Gerasimenko, N., Marković, S.B., Glaser, I., Zöller, L., 2009. Stratigraphy and spatial and temporal paleoclimatic trends in east European loess paleosol sequences. Quaternary International 196, 86106.Google Scholar
Buggle, B., Hambach, U., Kehl, M., Marković, S.B., Zöller, L., Glaser, B., 2013. The progressive evolution of a continental climate in SE-central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences. Geology 41, 771774.Google Scholar
Buggle, B., Hambach, U., Müller, K., Zöller, L., Marković, S.B., Glaser, B., 2014. Iron mineralogical proxies and Quaternary climate change in SE-European loess–paleosol sequences. Catena 117, 422.Google Scholar
Buggle, B., Wiesenberg, G., Glaser, B., 2010. Is there a possibility to correct fossil n-alkane data for postsedimentary alteration effects? Applied Geochemistry 25, 947957.Google Scholar
Buggle, B., Zech, M., 2015. New frontiers in the molecular based reconstruction of Quaternary paleovegetation from loess and paleosols. Quaternary International 372, 180187.Google Scholar
Bush, R., McInerney, F., 2013. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta 117, 161179.Google Scholar
Buylaert, J.-P., Ghysels, G., Murray, A.S., Thomsen, K.J., Vandenberghe, D., De Corte, F., Heyse, I., Van den haute, P., 2009. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium. Boreas 38, 160175.Google Scholar
Buylaert, J.-P., Jain, M., Murray, A. S., Thomsen, K. J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.Google Scholar
Campbell, G.E., Walker, R.T., Abdrakhmatov, K., Jackson, J., Elliott, J.R., Mackenzie, D., Middleton, T., Schwenninger, J.L., 2015. Great earthquakes in low strain rate continental interiors: an example from SE Kazakhstan. Journal of Geophysical Research: Solid Earth 120, 55075534.Google Scholar
Carey, J.B., Cunningham, R.L., Williams, E.G., 1976. Loess identification in soils of southeastern Pennsylvania. Soil Science Society of America Journal 40, 745750.CrossRefGoogle Scholar
Catt, J.A., 1977. Loess and coversands. In: Shotton, F.W. (Ed.), British Quaternary Studies: Recent Advances. Oxford University Press, Oxford, pp. 221229.Google Scholar
Chapot, M.S., Roberts, H.M., Duller, G.A.T., Lai, Z.P., 2012. A comparison of natural and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess. Radiation Measurements 47, 10451052.Google Scholar
Che, X., Li, G., 2013. Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon. Quaternary Research 80, 545551.Google Scholar
Chen, F.H., Chen, J.H., Holmes, J., Boomer, I., Austin, P., Gates, J.B., Wang, N.L., Brooks, S.J., Zhang, J.W., 2010. Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quaternary Science Reviews 29, 10551068.Google Scholar
Chen, J., An, Z.S., Head, J., 1999. Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quaternary Research 51, 215219.Google Scholar
Chen, J., Li, G.J., Yang, J.D., Rao, W.B., Lu, H.Y., Balsam, W., Sun, Y.B., Ji, J.F., 2007. Nd and Sr isotopic characteristics of Chinese deserts: implications for the provenances of Asian dust. Geochimica et Cosmochimica Acta 71, 39043914.Google Scholar
Chlachula, J., Evans, M.E., Rutter, N.W., 1998. A magnetic investigation of a Late Quaternary loess/palaeosol record in Siberia. Geophysical Journal International 132, 128132.Google Scholar
Clark, G., Pigott, S., 1965. Prehistoric Societies. Hutchinson, London.Google Scholar
Clark, J.G.D., 1952. Prehistoric Europe: The Economic Basis. Methuen, London.Google Scholar
Clark, P.U., Nelson, A.R., McCoy, W.D., Miller, B.B., Barnes, D.K., 1989. Quaternary aminostratigraphy of Mississippi valley loess. Geological Society of America Bulletin 101, 918926.Google Scholar
Clark, P.U., Pollard, D., 1998. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13, 19.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Manganelli, G., Saña, M., Alcade, G., Nebot, J., 2013. Holocene snail shell isotopic record of millennial-scale hydrological conditions in western Mediterranean: data from Bauma del Serrat del Pont (NE Iberian Peninsula). Quaternary International 303, 4353.Google Scholar
Coude-Gaussen, G., 1987. The perisaharan loess: sedimentological characterization and paleoclimatical significance. GeoJournal 15, 177183.Google Scholar
Cremaschi, M., Zerboni, A., Nicosia, C., Negrino, F., Rodnight, H., Spötl, C., 2015. Age, soil-forming processes, and archaeology of the loess deposits at the Apennine margin of the Po plain (northern Italy): new insights from the Ghiardo area. Quaternary International 376, 173188.Google Scholar
Crouvi, O., 2009. Sources and Formation of Loess in the Negev Desert during the Late Quaternary, with Implications for Other Worldwide Deserts. PhD dissertation, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem.Google Scholar
Crouvi, O., Amit, R., Ben Israel, M., Enzel, Y., 2017a. Loess in the Negev desert: sources, loessial soils, palaeosols, and palaeoclimatic implications. In: Enzel, Y., Bar-Yosef, O. (Eds.), Quaternary of the Levant: Environments, Climate Change, and Humans. Cambridge University Press, Cambridge, pp. 471482.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Gillespie, A.R., 2010. The role of active sand seas in the formation of desert loess. Quaternary Science Reviews 29, 20872098.CrossRefGoogle Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., Sandler, A., 2008. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev desert, Israel. Quaternary Research 70, 275282.Google Scholar
Crouvi, O., Barzilai, O., Goldsmith, Y., Amit, R., Porat, N., Enzel, Y., 2014. Middle to Late Pleistocene drastic change in eolian silt grains additions into Mediterranean soils at the Levant’s desert fringe. Israel Geological Society of America Annual Meeting, Vancouver, British Columbia. https://gsa.confex.com/gsa/2014AM/finalprogram/abstract_247871.htm.Google Scholar
Crouvi, O., Dayan, U., Amit, R., Enzel, Y., 2017b. An Israeli haboob: sea breeze activating local anthropogenic dust sources in the Negev loess. Aeolian Research 24, 3952.Google Scholar
Dani, A.H., Masson, V.M. (Eds.), 1992. History of Civilizations of Central Asia. Vol. 1, The Dawn of Civilization: Earliest Times to 700 B.C. UNESCO, Paris.Google Scholar
Danin, A., Ganor, E., 1991. Trapping of airborne dust by mosses in the Negev desert, Israel. Earth Surface Processes and Landforms 16, 153162.Google Scholar
Dansgaard, P., 1964. Stable isotopes in precipitation. Tellus 16, 436468.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahi-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjöprnsdottir, A.E., Jouzel, J., Bond, G, 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.Google Scholar
De Ploey, J., 1977. Some experimental data on slopewash and wind action with reference to Quaternary morphogenesis in Belgium. Earth Surface Processes 2, 101115.Google Scholar
Dettman, D.L., Kohn, M.J., Quade, J., Ryerson, F.J., Ojha, T.P., Hamidullah, S., 2001. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29, 3134.Google Scholar
Diefendorf, A., Freeman, K., Wing, S., Graham, H., 2011. Production of n-alkyl lipids in living plants and implications for the geologic past. Geochimica et Cosmochimica Acta 75, 74727485.Google Scholar
Dietze, E., Wünnemann, B., Hartmann, K., Diekmann, B., Jin, H., Stauch, G., Yang, S., Lehmkuhl, F., 2013. Early to mid-Holocene lake high-stand sediments at Lake Gonggi Cona, northeastern Tibetan Plateau, China. Quaternary Research 79, 325336.Google Scholar
Ding, Z., Rutter, N., Liu, T.S., 1993. Pedostratigraphy of Chinese loess deposits and climatic cycles in the last 2.5 Myr. Catena 20, 7391.Google Scholar
Ding, Z., Sun, J., Rutter, N.W., Rokosh, D., Liu, T., 1999. Changes in sand content of loess deposits along a north-south transect of the Chinese Loess Plateau and the implications for desert variations. Quaternary Research 52, 5662.CrossRefGoogle Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F., Liu, T.S., 2002a. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography 17, 5-15-21.Google Scholar
Ding, Z.L., Ranov, V., Yang, S.L., Finaev, A., Han, J.M., Wang, G.A., 2002. The loess record in southern Tajikistan and correlation with Chinese loess. Earth and Planetary Science Letters 200, 387400.Google Scholar
Ding, Z.L., Yu, Z.W., Rutter, N.W., Liu, T.S., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews 13, 3970.Google Scholar
Dirghangi, S., Pagani, M., Hren, M., Tipple, B., 2013. Distribution of glycerol dialkyl glycerol tetraethers in soils from two environmental transects in the USA. Organic Geochemistry 59, 4960.Google Scholar
Dodonov, A.E., 1991. Loess of central Asia. GeoJournal 24, 185194.Google Scholar
Dodonov, A.E., 2002. Quaternary of Middle Asia: Stratigraphy, Correlation, Paleogeography. [In Russian.] Geos, Moscow .Google Scholar
Dodonov, A.E., 2007. Loess records: central Asia. In: Elias, S. (Ed.), The Encyclopedia of Quaternary Sciences. Elsevier, Amsterdam, pp. 14181429.Google Scholar
Dodonov, A.E., Baiguzina, L.L., 1995. Loess stratigraphy of central Asia: palaeoclimatic and palaeoenvironmental aspects. Quaternary Science Reviews 14, 707720.Google Scholar
Dodonov, A.E., Sadchikova, T.A., Sedov, S.N., Simakova, A.N., Zhou, L.P., 2006. Multidisciplinary approach for paleoenvironmental reconstruction in loess-paleosol studies of the Darai Kalon section, southern Tajikistan. Quaternary International 152–153, 4858.Google Scholar
Dodonov, A.E., Zhou, L., 2008. Loess deposition in Asia: its initiation and development before and during the Quaternary. Episodes 31, 222225.Google Scholar
Dong, Y., Wu, N., Li, F., Huang, L., Wen, W., 2015. Time-transgressive nature of the magnetic susceptibility record across the Chinese Loess Plateau at the Pleistocene/Holocene transition. PLoS ONE 10, e0133541.Google Scholar
Eagle, R.A., Risi, C., Mitchell, J.L., Eiler, J.M., Seibt, U., Neelin, J.D., Li, G., Tripati, A.K., 2013. High regional climate sensitivity over continental China constrained by glacial-recent changes in temperature and the hydrological cycle. Proceedings of the National Academy of Sciences of the United States of America 110, 8813–8818.Google Scholar
Edelman, C.H., Crommelin, R.D., 1939. Ueber die periglaziale Natur des Jungpleistozäns in den Niederlanden. Abhandlungen Natur Verzeichnis Bremen 31/2, 307318.Google Scholar
Eden, D.N., Qizhong, W., Hunt, J.L., Whitton, J.S., 1994. Mineralogical and geochemical trends along the Loess Plateau, North China. Catena 21, 7390.Google Scholar
Eganhouse, R.P. (Ed.), 1997. Molecular Markers in Environmental Geochemistry. ACS Symposium Series 671. American Chemical Society, Washington, DC.CrossRefGoogle Scholar
Eglinton, T., Eglinton, G., 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters 275, 116.Google Scholar
Ehlers, J., Eissmann, L., Lippstreu, L., Stephan, H.-J., Wansa, S., 2004. Pleistocene glaciation of North Germany. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations – Extent and Chronology, Part I: Europe. Developments in Quaternary Sciences, Vol. 2. Elsevier, Amsterdam, pp. 135146.Google Scholar
Ehlers, J., Grube, A., Stephan, H.J., Wansa, S., 2011. Pleistocene glaciation of North Germany – new results. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look. Developments in Quaternary Sciences, Vol. 15. Elsevier, Amsterdam, pp. 149162.Google Scholar
Espizúa, L.E., 2004. Pleistocene glaciations in the Mendoza Andes, Argentina. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations – Extent and Chronology, Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Sciences, Vol. 2. Elsevier, Cambridge, pp 6973.Google Scholar
Evans, M.E., 2001. Magnetoclimatology of aeolian sediments. Geophysical Journal International 144, 495497.Google Scholar
Evans, M.E., Heller, F., 2003. Environmental Magnetism – Principles and Applications of Enviromagnetics. Academic Press, Amsterdam.Google Scholar
Evans, M.N., Tolwinski-Ward, S.E., Thompson, D.M., Anchukaitis, K.J., 2013. Applications of proxy system modeling in high resolution paleoclimatology. Quaternary Science Reviews 76, 1628.Google Scholar
Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003. Detrital zircon analysis of the sedimentary record. Reviews in Mineralogy and Geochemistry 53, 277303.Google Scholar
Fehrenbacher, J.B., White, J.L., Ulrich, H.P., Odell, R.T., 1965. Loess distribution in southeastern Illinois and southwestern Indiana. Soil Science Society of America Proceedings 29, 566572.Google Scholar
Feng, Z.D., Ran, M., Yang, Q.L., Zhai, X.W., Wang, W., Zhang, X.S., Huang, C.Q., 2011. Stratigraphies and chronologies of late Quaternary loess-paleosol sequences in the core area of the central Asian arid zone. Quaternary International 240, 156166.CrossRefGoogle Scholar
Fenn, K., Stevens, T., Bird, A., Limonta, M., Rittner, M., Vermeesch, P., Andò, S., et al., 2017. Insights into the provenance of the Chinese Loess Plateau from joint zircon U-Pb and garnet geochemical analysis of last glacial loess. Quaternary Research (in press). https://doi.org/10.1017/qua.2017.86.Google Scholar
Fink, J., 1956. Zur Korrelation der Terrassen und Lösse in Österreich. Eiszeitalter und Gegenwart 7, 4977.Google Scholar
Fink, J., 1962. Studien zur absoluten und relativen Chronologie der fossilen Böden in Österreich, II Wetzleinsdorf und Stillfried. Archaeologia Austriaca 31, 118.Google Scholar
Fink, J., Haase, G., Ruske, R., 1977. Bemerkungen zur Lößkarte von Europe 1:2,5 Mio. Petermanns Geographische Mitteilungen 2, 8194.Google Scholar
Fink, J., Kukla, G., 1977. Pleistocene climates in central Europe: at least 17 interglacials after the Olduvai event. Quaternary Research 7, 363371.Google Scholar
Fisher, R.V., 1961. Proposed classification of volcaniclastic sediments and rocks. Geological Society of America Bulletin 72, 14091414.Google Scholar
Fitzsimmons, K., Marković, S.B., Hambach, U., 2012. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin. Quaternary Science Reviews 41, 104118.Google Scholar
Fitzsimmons, K.E., Sprafke, T., Zielhofer, C., Günter, C., Deom, J.-M., Sala, R., Iovita, R., 2016. Loess accumulation in the Tian Shan piedmont: Implications for palaeoenvironmental change in arid central Asia. Quaternary International (in press). https://doi.org/10.1016/j.quaint.2016.07.041.Google Scholar
Fitzsimmons, K.E., Iovita, R., Sprafke, T., Glantz, M., Talamo, S., Horton, K., Beeton, T., Alipova, S., Bekseitov, G., Ospanov, Y., Deom, J.-M., Sala, R., Taimagambetov, Z., 2017. A chronological framework connecting the early Upper Palaeolithic across the Central Asian piedmont. Journal of Human Evolution 113, 107126.Google Scholar
Follmer, L.R., 1996. Loess studies in central United States: evolution of concepts. Engineering Geology 45, 287304.Google Scholar
Food and Agriculture Organization of the United Nations (FAO), International Institute for Applied Systems Analysis (IIASA), ISRIC–World Soil Information, Institute of Soil Science–Chinese Academy of Sciences, and Joint Research Centre of the European Commission, 2009. Harmonized World Soil Database (version 1.1). FAO, Rome; IIASA, Laxenburg, Austria.Google Scholar
Forman, S.L., Bettis, E.A. III, Kemmis, T.J., Miller, B.B., 1992. Chronological evidence for multiple periods of loess deposition during the Late Pleistocene in the Missouri and Mississippi River Valleys, U.S.: implications for the activity of the Laurentide Ice Sheet. Palaeogeography, Palaeoclimatology, Palaeoecology 93, 7183.Google Scholar
Forman, S.L., Pierson, J., 2002. Late Pleistocene luminescence chronology of loess deposition in the Missouri and Mississippi river valleys, United States. Palaeogeography, Palaeoclimatology, Palaeoecology 186, 2546.Google Scholar
Forster, T., Evans, M.E., Heller, F., 1994. The frequency dependence of low field susceptibility in loess sediments. Geophysical Journal International 118, 636642.Google Scholar
Foss, J.E., Fanning, D.S., Miller, F.P., Wagner, D.P., 1978. Loess deposits of the eastern shore of Maryland. Soil Science Society of America Journal 42, 329334.Google Scholar
Frazee, C.J., Fehrenbacher, J.B., Krumbein, W.C., 1970. Loess distribution from a source. Soil Science Society of America Proceedings 34, 296301.Google Scholar
Gallet, S., Jahn, B., Torii, M., 1996. Geochemical characterization of the Luochuan loess-paleosol sequence China, and paleoclimatic implications. Chemical Geology 133, 6788.Google Scholar
Gallet, S., Jahn, B., Van Vliet-Lanoë, B., Dia, A., Rossello, E.A., 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust. Earth and Planetary Science Letters 156, 157172.Google Scholar
Gao, X.B., Hao, Q.Z., Wang, L., Oldfield, F., Bloemendal, J., Deng, C.L., Song, Y., et al., 2018. The different climatic response of pedogenic hematite and ferrimagnetic minerals: Evidence from particle-sized modern soils over the Chinese Loess Plateau. Quaternary Science Reviews 179, 6986.Google Scholar
Gat, J.R., Bowser, C., 1991. The heavy isotope enrichment of water in coupled evaporative systems. In: Taylor, H.P., O’Neil, J.R., Kaplan, I.R. (Eds.), Stable Isotope Geochemistry: A Tribute to Samuel Epstein. The Geochemical Society, San Antonio, TX, pp. 159168.Google Scholar
Ge, J.Y., Guo, Z.T., Zhao, D.A., Zhang, Y., Wang, T., Yi, L., Deng, C.L., 2014. Spatial variations in paleowind direction during the last glacial period in North China reconstructed from variations in the anisotropy of magnetic susceptibility of loess deposits. Tectonophysics 629, 353361.Google Scholar
Ghafarpour, A., Khormali, F., Balsam, W., Karimi, A., Ayoubi, S., 2016. Climatic interpretation of loess-paleosol sequences at Mobarakabad and Aghband, Northern Iran. Quaternary Research 86, 95109.CrossRefGoogle Scholar
Gibbard, P.L., Cohen, K.M., 2008. Global chronostratigraphical correlation table for the last 2.7 million years. Episodes 31, 243247.Google Scholar
Gild, C., Geitner, C., Sanders, D., 2017. Discovery of a landscape-wide drape of late-glacial aeolian silt in the western Northern Calcareous Alps (Austria): first results and implications. Geomorphology 301, 3952.Google Scholar
González Bonorino, F., 1966. Soil clay mineralogy of the Pampas plain, Argentina. Journal of Sedimentary Petrology 36, 10261035.Google Scholar
Gong, H., Xie, W., Zhang, R., Zhang, Y., 2017. U-Pb ages of detrital zircon and provenances of Red Clay in the Chinese Loess Plateau. Journal of Asian Earth Sciences 138, 495501.Google Scholar
Good, T.R., Bryant, I.D., 1985. Fluvio-aeolian sedementation – an example from Banks Island, N.W.T., Canada. Geografiska Annaler: Series A. Physical Geography 67, 3346.Google Scholar
Gozdzik, J., 1991. Sedimentological record of aeolian processes from the Upper Plenivistulian and the turn of Pleni- and Late Vistulian in central Poland. Zeitschrift für Geomorphologie, Supplementband 90, 5160.Google Scholar
Grahmann, R., 1932. Der Löss in Europa. Mitteilungen der Gesellschaft für Erkunde Leipzig 51, 524.Google Scholar
Greene, R.S.B., Cattle, S.R., McPherson, A.A., 2009. Role of eolian dust deposits in landscape development and soil degradation in southeastern Australia. Australian Journal of Earth Sciences 56, S55S65.Google Scholar
Grenet, F., de la Vaissière, E., 2002. The Last Days of Panjikent. Silk Road Art and Archaeology 8, 155196.Google Scholar
Grichuk, V.P., 1992. Main types of vegetation (ecosystems) for the maximum cooling of the last glaciation. In: Frenzel, B., Pecsi, B., Velichko, A.A. (Eds.), Atlas of Palaeoclimates and Palaeoenvironments of the Northern Hemisphere. INQUA/Hungarian Academy of Sciences, Budapest, pp. 123124.Google Scholar
Grimley, D.A., 1996. Stratigraphy, Magnetic Susceptibility, and Mineralogy of Loess-Paleosol Sequences in Southwestern Illinois and Eastern Missouri. PhD dissertation, University of Illinois, Urbana.Google Scholar
Grimley, D.A., 2000. Glacial and nonglacial sediment contributions to Wisconsin Episode loess in the central United States. Geological Society of America Bulletin 112, 14751495.Google Scholar
Grimley, D.A., Oches, E.A., 2015. Amino acid geochronology of gastropod-bearing Pleistocene units in Illinois, central USA. Quaternary Geochronology 25, 1025.Google Scholar
Gronenborn, D., 2010. Climate, crises, and the neolithisation of central Europe between IRD-events 6 and 4. In: Gronenborn, D., Petrasch, J. (Eds.), The Spread of the Neolithic to Central Europe: International Symposium, Mainz 24 June–26 June 2005. Verlag des Römisch-Germanischen Zentralmuseums, Mainz, Germany, pp. 61–81.Google Scholar
Grützner, C., Carson, E., Walker, R.T., Rhodes, E.J., Mukambayev, A., Mackenzie, D., Elliott, J.R., Campbell, G., Abdrakhmatov, K., 2017. Assessing the activity of faults in continental interiors: palaeoseismic insights from SE Kazakhstan. Earth and Planetary Science Letters 459, 93104.Google Scholar
Gullentops, F., 1954. Contributions à la chronologie du pleistocène et des formes du relief en Belgique. Mémoires Institut Géologique de Louvain 18, 125252.Google Scholar
Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159163.Google Scholar
Guo, Z.T., Berger, A., Yin, Q.Z., Qin, L., 2009. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of the Past 5, 2131.Google Scholar
Haase, D., Fink, J., Haase, G., Ruske, R., Pécsi, M., Richter, H., Altermann, M., Jäger, K.D., 2007. Loess in Europe—its spatial distribution based on a European Loess Map, scale 1:2,500,000. Quaternary Science Reviews 26, 13011312.Google Scholar
Haas, M., Bliedtner, M., Borodynkin, I., Salazar, G., Szidat, S., Eglinton, T., Zech, R., 2017. Radiocarbon dating of leaf waxes in the loess-paleosol sequence Kurtak, central Siberia. Radiocarbon 59, 165176.Google Scholar
Haesaerts, P., Borziak, I., Chirica, V., Damblon, F., Koulakovska, L., van der Plicht, J., 2003. The east Carpathian loess record: a reference for the middle and late pleniglacial stratigraphy in central Europe. Quaternaire 14, 163188.Google Scholar
Haesaerts, P., Chekha, V.P., Damblon, F., Drozdov, N.I., Orlova, L.A., Van der Plicht, J., 2005. The loess-palaeosol succession of Kurtak (Yenisei Basin, Siberia): a reference record for the Karga stage (MIS 3). Quaternaire 16, 324.Google Scholar
Haesaerts, P., Damblon, F., Gerasimenko, N., Spagna, P., Pirson, S., 2016. The Late Pleistocene loess-palaeosol sequence of middle Belgium. Quaternary International 411, 2543.Google Scholar
Häggi, C., Zech, R., McIntyre, C., Zech, M., Eglinton, T., 2014. On the stratigraphic integrity of leaf-wax biomarkers in loess paleosol. Biogeosciences 11, 24552463.Google Scholar
Hajdas, I., 2008. Radiocarbon dating and its application in Quaternary studies. E&G – Quaternary Science Journal 57, 224.Google Scholar
Hamilton, T.D., Craig, J.L., Sellmann, P.V., 1988. The Fox permafrost tunnel: a late Quaternary geologic record in central Alaska. Geological Society of America Bulletin 100, 948969.Google Scholar
Handy, R., 1976. Loess distribution by variable winds. Geological Society of America Bulletin 87, 915927.Google Scholar
Hao, Q., Guo, Z., 2004. Magnetostratigraphy of a late Miocene-Pliocene loess-soil sequence in the western Loess Plateau in China. Geophysical Research Letters 31, L092099.Google Scholar
Hao, Q.Z., Wang, L., Oldfield, F., Peng, S.Z., Qin, L., Song, Y., Xu, B., Qiao, Y., Bloemendal, J., Guo, Z.T., 2012. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability. Nature 490, 393396.Google Scholar
Hatté, C., Fontugne, M., Rousseau, D.D., Antoine, P., Zöller, L., Tisnérat-Laborde, N., Bentaleb, I., 1998. δ13C variations of loess organic matter as a record of the vegetation response to climatic changes during the Weichselian. Geology 26, 583586.Google Scholar
Hatté, C., Gauthier, C., Rousseau, D.D., Antoine, P., Fuchs, M., Lagroix, F., Markovic, S.B., Moine, O., Sima, A., 2013. Excursions to C-4 vegetation recorded in the upper Pleistocene loess of Surduk (northern Serbia): an organic isotope geochemistry study. Climate of the Past 9, 10011014.Google Scholar
Hawkesworth, C.J., Kemp, A.I.S., 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226, 144162.Google Scholar
Heller, F., Evans, M.A., 1995. Loess magnetism. Reviews of Geophysics 33, 211240.Google Scholar
Heller, F., Liu, T., 1982. Magnetostratigraphical dating of loess deposits in China. Nature 300, 431433.Google Scholar
Heller, F., Liu, T., 1984. Magnetism of Chinese loess deposits. Journal of the Royal Astronomical Society 77, 125141.Google Scholar
Heller, F., Liu, X., Liu, T., Xu, T., 1991. Magnetic susceptibility of loess in China. Earth and Planetary Science Letters 103, 301310.Google Scholar
Heller, F., Shen, C.D., Beer, J., Liu, X.M., Liu, T.S., Bronger, A., Suter, M., Bonani, G., 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and paleoclimatic implications. Earth and Planetary Science Letters 114, 385390.Google Scholar
Hepp, J., Zech, R., Rozanski, K., Tuthorn, M., Glaser, B., Greule, M., Keppler, F., Huang, Y., Zech, W., Zech, M., 2017. Late Quaternary relative humidity changes from Mt. Kilimanjaro, based on a coupled 2H-18O biomarker paleohygrometer approach. Quaternary International 438B, 116130.Google Scholar
Heslop, D., Langereis, C.G., Dekkers, M.J., 2000. A new astronomical timescale for the loess deposits of northern China. Earth and Planetary Science Letters 184, 125139.Google Scholar
Hesse, P.P., McTainsh, G.H., 2003. Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews 22, 20072035.Google Scholar
Ho, P., 1976. The Cradle of the East: An Enquiry into the Indigenous Origins of Techniques and Ideas of Neolithic and Early Historic China 5000-1000 BC. Chinese University of Hong Kong Press, Hong Kong.Google Scholar
Höfle, C., Edwards, M.E., Hopkins, D.M., Mann, D.H., 2000. The full-glacial environment of the northern Seward Peninsula, Alaska, reconstructed from the 21,500-year-old Kitluk paleosol. Quaternary Research 53, 143153.Google Scholar
Höfle, C., Ping, C.-L., 1996. Properties and soil development of late-Pleistocene paleosols from Seward Peninsula, northwest Alaska. Geoderma 71, 219243.Google Scholar
Hopkins, D.M., 1963. Geology of the Imuruk Lake area, Seward Peninsula, Alaska. U.S. Geological Survey Bulletin 1141-C. U.S. Government Printing Office, Washington, DC.Google Scholar
Hu, J., Yang, X., 2016. Geochemical and geomorphological evidence for the provenance of the eolian deposits in the Badain Jaran Desert, northwestern China. Quaternary Science Reviews 131, 179192.Google Scholar
Huijzer, A.S., 1993. Cryogenic Microfabrics and Macrostructures: Interrelations, Processes and Paleoclimatic Significance. PhD dissertation, Vrije Universiteit, Amsterdam.Google Scholar
Hunt, R.M., 1990. Taphonomy and sedimentology of Arikaree (lower Miocene) fluvial, eolian, and lacustrince paleoenvironments, Nebraska and Wyoming: a paleobiota entombed in fine-grained volcaniclastic rocks. In: Lockley, M.G., Rice, A. (Eds.), Volcanism and Fossil Biotas. Geological Society of America, Special Paper 244. Geological Society of America, Boulder, CO, pp. 69–112.Google Scholar
Ijmker, J., Stauch, G., Dietze, E., Hartmann, K., Diekmann, B., Lockot, G., Opitz, S., Wünnemann, B., Lehmkuhl, F., 2012. Characterisation of transport process and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment, NE Tibet Plateau. Sedimentary Geology 281, 166179.Google Scholar
Imbrie, J., Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations. Science 207, 943953.Google Scholar
Indorante, S.J., 1998. Introspection of natric soil genesis on the loess-covered till plain in south central Illinois. Quaternary International 51, 4142.Google Scholar
Iriondo, M., 1990. Map of the South American plains – its present state. Quaternary of South America and Antarctic Peninsula 6, 297308.Google Scholar
Iriondo, M.H., Kröhling, D.M., 2007. Non-classical types of loess. Sedimentary Geology 202, 352368.Google Scholar
Jacobs, P.M., Knox, J.C., 1994. Provenance and petrology of a long-term Pleistocene depositional sequence in Wisconsin’s Driftless Area. Catena 22, 4968.Google Scholar
Jacobs, P.M., Mason, J.A., Hanson, P.R., 2012. Loess mantle spatial variability and soil horizonation, southern Wisconsin, USA. Quaternary International 265, 4253.Google Scholar
Jensen, B.J.L., Evans, M.E., Froese, D.G., Kravchinsky, V.A., 2016. 150,000 Years of loess accumulation in central Alaska. Quaternary Science Reviews 135, 123.Google Scholar
Jensen, B.J.L., Reyes, A.V., Froese, D.G., Stone, D.B., 2013. The Palisades is a key reference site for the middle Pleistocene of eastern Beringia: new evidence from paleomagnetics and regional tephrostratigraphy. Quaternary Science Reviews 63, 91108.Google Scholar
Jia, G., Rao, Z., Zhang, J., Li, Z., Chen, F., 2013. Tetraether biomarker records from a loess-paleosol sequence in the western Chinese Loess Plateau. Frontiers in Microbiology 4, 199. http://dx.doi.org/10.3389/fmicb.2013.00199 Google Scholar
Jiang, W., Cheng, Y., Yang, X., Yang, S., 2013. Chinese Loess Plateau vegetation since the Last Glacial Maximum and its implications for vegetation restoration. Journal of Applied Ecology 50, 440448.Google Scholar
Jiang, W., Yang, X., Cheng, Y., 2014. Spatial patterns of vegetation and climate on the Chinese Loess Plateau since the Last Glacial Maximum. Quaternary International 334–335, 5260.Google Scholar
Jipa, D.C., 2014. The conceptual sedimentary model of the Lower Danube loess basin: sedimentogenetic implications. Quaternary International 351, 1424.Google Scholar
Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V., Sveinbjörnsdottir, A.E., White, J., 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. Journal of Quaternary Science 16, 299307.Google Scholar
Johnson, W.C., Willey, K.L., 2000. Isotopic and rock magnetic expression of environmental change at the Pleistocene-Holocene transition in the central Great Plains. Quaternary International 67, 89106.Google Scholar
Johnson, W.C., Willey, K.L., Mason, J.A., May, D.W., 2007. Stratigraphy and environmental reconstruction at the middle Wisconsinan Gilman Canyon Formation type locality, Buzzard’s Roost, southwestern Nebraska, USA. Quaternary Research 67, 474486.Google Scholar
Karrow, P.F., McAndrews, J.H., Miller, B.B., Morgan, A.V., Seymour, K.L., White, O.L., 2001. Illinoian to Late Wisconsinan stratigraphy at Woodbridge, Ontario. Canadian Journal of Earth Sciences 38, 921942.Google Scholar
Kasse, C., 1993. Periglacial environments and climate development during the Early Pleistocene Tiglian stage (Beerse Glacial) in northern Belgium. Geologie en Mijnbouw 72, 107123.Google Scholar
Kasse, C., 1997. Cold-climate aeolian sand-sheet formation in north-western Europe (c. 14–12.4 ka): a response to permafrost degradation and increased aridity. Permafrost and Periglacial Processes 8, 295311.Google Scholar
Kasse, C., 1999. Late Pleniglacial and Late Glacial aeolian phases in the Netherlands. In: Schirmer, W. (Ed.), Dunes and Fossil Soils. GeoArchaeoRhein 3. LIT Verlag, Münster, Germany, pp. 6182.Google Scholar
Kasse, C., 2002. Sandy aeolian deposits and environments and their relation to climate during the Last Glacial Maximum and Lateglacial in northwest and central Europe. Progress in Physical Geography 26, 507532.Google Scholar
Kasse, C., Vandenberghe, D., De Corte, F., Van den Haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22, 695708.Google Scholar
Kaufman, D.S., Manley, W.F., 1998. A new procedure for determining D/L amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17, 9871000.Google Scholar
Kaufman, D.S., Manley, W.F., Ager, T.A., Axford, Y., Balascio, N.L., Begét, J.E., Brigham-Grette, J., et al., 2004. Pleistocene maximum and late Wisconsinan glacier extents across Alaska, U.S.A. In: Ehlers, J., Gibbard, P.L., eds., Quaternary Glaciations – Extent and Chronology, Part II: North America. Developments in Quaternary Sciences, Vol. 2. Elsevier, Amsterdam, pp. 927.Google Scholar
Kehl, M., Sahvati, R., Ahmadi, H., Frechen, M., Skowronek, A., 2005. Loess paleosol-sequences along a climatic gradient in northern Iran. Eiszeitalter und Gegenwart 55, 149173.Google Scholar
Kehrwald, N.M., McCoy, W.D., Thibeault, J., Burns, S.J., Oches, E.A., 2010. Paleoclimatic implications of the spatial patterns of modern and LGM European land-snail shell δ18O. Quaternary Research 74, 166176.Google Scholar
Kleiss, H.J., 1973. Loess distribution along the Illinois soil-development sequence. Soil Science 115, 194198.Google Scholar
Koloszar, L., 2010. The thickest and the most complete loess sequence in the Carpathian basin: the borehole Udvari-2A. Open Geosciences 2, 165174.Google Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., Stone, J., 2008. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, 846866.Google Scholar
Kosnik, M.A., Kaufman, D.S., Hua, Q., 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for geochronology: I. Age calibration curves. Quaternary Geochronology 3, 308327.Google Scholar
Koster, E., 1988. Ancient and modern cold-climate aeolian sand deposition. Journal of Quaternary Science 3, 6983.Google Scholar
Kozarski, S., 1990. Pleni-and Late Vistulian aeolian phenomena in Poland: new occurrences, palaeoenvironmental and stratigraphic interpretations. Acta Geographica Debrecina 1987–1988, 26–27, 3145.Google Scholar
Kruk, J., Alexadrowicz, S., Milisauskas, S., Śnieszko, Z., 1996. Environmental Changes and Settlement on the Loess Uplands. [In Polish.] Polish Academy of Sciences, Kraków, Poland.Google Scholar
Kruk, J., Milisauskas, S., 1999. The Rise and Fall of Neolithic Societies. [In Polish.] Polish Academy of Sciences, Kraków, Poland.Google Scholar
Kukla, G.J., 1975. Loess stratigraphy of central Europe. In: Butzer, K.W., Isaac, L.I. (Eds.), After the Australopithecines. Mouton, The Hague, the Netherlands, pp. 99187.Google Scholar
Kukla, G., 1977. Pleistocene land-sea correlations. 1. Europe. Earth-Science Reviews 13, 307374.Google Scholar
Kukla, G., 1987. Loess stratigraphy in central China. Quaternary Science Reviews 6, 191219.Google Scholar
Kukla, G., An, Z., 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 203225.Google Scholar
Kukla, G., Heller, F., Liu, X., Xu, T., Liu, T., An, Z., 1988. Pleistocene climates in China dated by magnetic susceptibility. Geology 16, 811814.Google Scholar
Kutzbach, J.E., 1987. Model simulations of the climatic patterns during the deglaciation of North America. in: Ruddiman, W.F., Wright, H.E. (Eds.), North America and Adjacent Oceans during the Last Deglaciation - The Geology of North America. The Geological Society of America, Boulder, pp. 425446.Google Scholar
LaGarry, H.E., 1998. Lithostratigraphic revision and redescription of the Brule Formation (White River Group) of northwestern Nebraska. In: Terry, D.O. Jr., LaGarry, H.E., Hunt, R.M. Jr. (Eds.), Depositional Environments, Lithostratigraphy, and Biostratigraphy of the White River and Arikaree Groups (Late Eocene-Early Miocene, North America). Geological Society of America, Special Paper 325. Geological Society of America, Boulder, CO, pp. 6391.Google Scholar
Lagroix, F., Banerjee, S.K., 2004. The regional and temporal significance of primary aeolian magnetic fabrics preserved in Alaskan loess. Earth and Planetary Science Letters 225, 379395.Google Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stocker, T.F., Ruth, U., Steffensen, J.P., Maggi, V., 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616619.Google Scholar
Lang, A., Hatté, C., Rousseau, D.D., Antoine, P., Fontugne, M., Zöller, L., Hambach, U., 2003. High-resolution chronologies for loess: comparing AMS14C and optical dating results. Quaternary Science Reviews 22, 953959.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy Astrophysics 428, 261285.Google Scholar
Lautridou, J.-P., 1981. Lithostratigraphie et chronostratigraphie des loess de Haute Normandie. In: Pécsi, M. (Ed.), Studies on Loess. Acta Geologica Academiae Scientiarum Hungaricae 22. Akadémiai Kiadó, Budapest, pp. 125132.Google Scholar
Lautridou, J.-P., Sommé, J., 1981. L’extension des niveaux repères périglaciaires et grandes fentes de gel de la stratigraphie du Pleistocène Récent de la France du Nord-Ouest. Biuletyn Peryglacjalny 28, 179185.Google Scholar
Lautridou, J.P., Sommé, J., Jamagne, M., 1984. Sedimentological, mineralogical and geochemical characteristics of the loess of north-western France. In: Pécsi, M. (Ed.), Lithology and Stratigraphy of Loess and Paleosols. Geographical Research Institute of the Hungarian Academy of Science, Budapest, pp. 121132.Google Scholar
Lea, P.D., 1990. Pleistocene periglacial eolian deposits in southwestern Alaska: sedimentary facies and depositional processes. Journal of Sedimentary Petrology 60, 582591.Google Scholar
Lea, P.D., Waythomas, C.F., 1990. Late-Pleistocene eolian sand sheets in Alaska. Quaternary Research 34, 269281.Google Scholar
Lehmkuhl, F., Haselein, F., 2000. Quaternary paleoenvironmental change on the Tibetan Plateau and adjacent areas (western China and western Mongolia). Quaternary International 65, 121145.Google Scholar
Lehmkuhl, F., Hilgers, A., Fries, S., Hülle, D., Schlütz, F., Shumilovskikh, L., Felauer, T., Protze, J., 2011. Holocene geomorphological processes and soil development as indicator for environmental change around Karakorum, Upper Orkhon Valley (central Mongolia). Catena 87, 3144.Google Scholar
Lehmkuhl, F., Schulte, P., Zhao, H., Hülle, D., Protze, J., Stauch, G., 2014. Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau. Catena 117, 2333.Google Scholar
Lehmkuhl, F., Zens, J., Krauß, L., Schulte, P., Kels, H., 2016. Loess-paleosol sequences at the northern European loess-belt in Germany: distribution, geomorphology and stratigraphy. Quaternary Science Reviews 153, 1130.Google Scholar
Leigh, D.S., 1994. Roxana Silt of the Upper Mississippi Valley: lithology, source, and paleoenvironment. Geological Society of America Bulletin 106, 430442.Google Scholar
Leigh, D.S., Knox, J.C., 1994. Loess of the Upper Mississippi Valley Driftless Area. Quaternary Research 42, 3040.Google Scholar
Leonard, A.B., Frye, J.C., 1960. Wisconsinan Molluscan Faunas of the Illinois Valley Region. Illinois Geological Survey Circular 304. Illinois Geological Survey, Urbana, IL.Google Scholar
Li, B., Li, S.-H., 2012. Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar. Quaternary Geochronology 10, 2431.Google Scholar
Li, F., Wu, N., Pei, Y., Hao, Q., Rousseau, D.-D., 2006. Wind-blown origin of Dongwan late Miocene–Pliocene dust sequence documented by land snail record in western Chinese Loess Plateau. Geology 34, 405408.Google Scholar
Li, Y., Song, Y., Chen, X., Li, J., Mamadjanov, Y., Aminov, J., 2016a. Geochemical composition of Tajikistan loess and its provenance implications. Palaeogeography, Palaeoclimatology, Palaeoecology 446, 186194.Google Scholar
Li, Y., Yang, S., Wang, X., Hu, J., Cui, L., Huang, X., Jiang, W., 2016b. Leaf wax n-alkane distributions in Chinese loess since the Last Glacial Maximum and implications for paleoclimate. Quaternary International 399, 190197.CrossRefGoogle Scholar
Liang, Y., Yang, T.B., Velichko, A.A., Zeng, B., Shi, P.H., Wang, L.D., Chen, Y., 2016. Paleoclimatic record from Chumbur-Kosa section in Sea of Azov region since Marine Isotope Stage 11. Journal of Mountain Science 13, 985999.Google Scholar
Licht, A., Pullen, A., Kapp, P., Abell, J., Gieser, N., 2016. Eolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geological Society of America Bulletin 128, 944956.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Litaor, M.I., 1987. The influence of eolian dust on the genesis of alpine soils in the Front Range, Colorado. Soil Science Society of America Journal 51, 142147.Google Scholar
Liu, C.-Q., Masuda, A., Okada, A., Yabuki, S., Zhang, J., Fan, Z.-L., 1993. A geochemical study of loess and desert sand in northern China: implications for continental crust weathering and composition. Chemical Geology 106, 359374.Google Scholar
Liu, J., Murray, A.S., Buylaert, J.-P., Jain, M., Chen, J., Lu, Y., 2016. Stability of fine-grained TT-OSL and post-IR IRSL signals from a c. 1 Ma sequence of aeolian and lacustrine deposits from the Nihewan Basin (northern China). Boreas 45, 703714.Google Scholar
Liu, Q.S., Roberts, A.P., Larrasoana, J.C., Banerjee, S.K., Guyodo, Y., Tauxe, L., Oldfield, F., 2012. Environmental magnetism: principles and applications. Reviews of Geophysics 50, RG4002.Google Scholar
Liu, T., Ding, Z., 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26, 111145.Google Scholar
Liu, T.S., 1966. Composition and Texture of Loess. Science Press, Beijing.Google Scholar
Liu, T.S, 1985. Loess and Environment. China Ocean Press, Beijing.Google Scholar
Liu, W., Huang, Y., 2005. Compound specific D/H ratios and molecular distributions of higher plant leaf waxes as novel paleoenvironmental indicators in the Chinese Loess Plateau. Organic Geochemistry 36, 851860.Google Scholar
Liu, W., Huang, Y., An, Z., Clemens, S.C., Li, L., Prell, W.L., Ning, Y., 2005. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 243254.Google Scholar
Liu, W., Sun, J., 2012. High-resolution anisotropy of magnetic susceptibility record in the central Chinese Loess Plateau and its paleoenvironment implications. Science China Earth Science 55, 488494.Google Scholar
Liu, W., Yang, H., Sun, Y., Wang, X., 2011. δ13C values of loess total carbonate: a sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese loess plateau. Chemical Geology 284, 317322.Google Scholar
Liu, X., 2010. The Silk Road in World History. Oxford University Press, New York.Google Scholar
Lorenzo, F., Mehl, A., Zárate, M., 2017. Dinámica fluvial y sedimentología del humedal Bañados del Atuel, provincia de La Pampa, Argentina. ACTAS XX Congreso Geológico Argentino, San Miguel de Tucumán, pp. 91–93.Google Scholar
Lu, H., An, Z., 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau. Science in China 41D, 626631.Google Scholar
Lu, H., Stevens, T., Yi, S., Sun, X., 2006. An erosional hiatus in Chinese loess sequences revealed by closely spaced optical dating. Chinese Science Bulletin 51, 22532259.Google Scholar
Lu, H.Y., Wu, N.Q., Liu, K.B., Jiang, H., Liu, T.S., 2007. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quaternary Science Reviews 26, 759772.Google Scholar
Luehmann, M.D., Peter, B., Connallon, C.B., Schaetzl, R.J., Smidt, S.J., Liu, W., Kincare, K., Walkowiak, T.A., Thorlund, E., Holler, M.S., 2016. Loamy, two-storied soils on the outwash plains of southwestern Lower Michigan: pedoturbation of loess with the underlying sand. Annals of the Association of American Geographers 106, 551571.Google Scholar
Luehmann, M.D., Schaetzl, R.J., Miller, B.A., Bigsby, M., 2013. Thin, pedoturbated and locally sourced loess in the western Upper Peninsula of Michigan. Aeolian Research 8, 85100.Google Scholar
Maat, P.B., Johnson, W.C., 1996. Thermoluminescence and new C-14 age estimates for late Quaternary loesses in southwestern Nebraska. Geomorphology 17, 115128.Google Scholar
Machalett, B., Oches, E.A., Frechen, M., Zöller, L., Hambach, U., Mavlyanova, N.G., Markovic, S.B., Endlicher, W., 2008. Aeolian dust dynamics in central Asia during the Pleistocene: driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophysics, Geochemistry, Geosystems 9, Q08Q09. http://dx.doi.org/10.1029/2007GC001938.Google Scholar
Maher, B.A., 2011. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance. Aeolian Research 3, 87144.Google Scholar
Maher, B.A., 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews 154, 2384.Google Scholar
Maher, B.A., Thompson, R., 1992. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research 37, 155170.Google Scholar
Mahowald, N.M., Muhs, D.R., Levis, S., Rasch, P.J., Yoshioka, M., Zender, C.S., Luo, C., 2006. Change in atmospheric mineral aerosols in response to climate: Last glacial period, pre-indistrial, modern, and doubled carbon dioxide climates. Journal of Geophysical Research, 111. doi: http://dx.doi.org/10.1029/2005JD006653 Google Scholar
Mancini, M.V., Paez, M.M., Prieto, A.R., Stutz, S., Tonello, M., Vilanova, I., 2005. Mid-Holocene climatic variability reconstruction from pollen records (32°–52°S, Argentina). Quaternary International 132, 4759.Google Scholar
Manikowska, B., 1994. Etat des études des processus éoliens dans la région de Lodz (Pologne centrale). Biuletyn Peryglacjalny 33, 107131.Google Scholar
Markewich, H.W., Wysocki, D.A., Pavich, M.J., Rutledge, E.M., Millard, H.T., Rich, F.J., Maat, P.B., Rubin, M., McGeehin, J.P., 1998. Paleopedology plus TL, 10Be, and 14C dating as tools in stratigraphic and paleoclimatic investigations, Mississippi River Valley, U.S.A. Quaternary International 51–2, 143167.Google Scholar
Marković, S.B., Bokhorst, M., Vandenberghe, J., Oches, E.A., Zöller, L., McCoy, W.D., Gaudenyi, T., Jovanović, M., Hambach, U., Machalett, B., 2008. Late Pleistocene loess-paleosol sequences in the Vojvodina region, North Serbia. Journal of Quaternary Science 23, 7384.Google Scholar
Marković, S.B., Fitzsimmons, K.E., Sprafke, T., Gavrilovic, D., Smalley, I.J., Jovic, V., Svirčev, Z., Gavrilov, M.B., Bešlin, M., 2016. The history of Danube loess research. Quaternary International 399, 8699.Google Scholar
Marković, S.B., Hambach, U., Catto, N., Jovanović, M., Buggle, B., Machalett, B., Zöller, L., Glaser, B., Frechen, M., 2009. Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia. Quaternary International 198, 255266.Google Scholar
Marković, S.B., Hambach, U., Stevens, T., Kukla, G.J., Heller, F., McCoy, W.D., Oches, E.A., Buggle, B., Zöller, L., 2011. The last million years recorded at the Stari Slankamen loess-palaeosol sequence: revised chronostratigraphy and long-term environmental trends. Quaternary Science Reviews 30, 11421154.Google Scholar
Marković, S.B., Oches, E.A., McCoy, W.D., Gaudenyi, T., Frechen, M., 2007. Malacological and sedimentological evidence for “warm” climate from the Irig loess sequence (Vojvodina, Serbia). Geophysics, Geochemistry, Geosystems 8, Q09008.Google Scholar
Marković, S.B., Oches, E.A., Sümegi, P., Jovanovic, M., Gaudenyi, T., 2006. An introduction to the Middle and Upper Pleistocene loess-paleosol sequence at Ruma brickyard, Vojvodina, Serbia. Quaternary International 149, 8086.Google Scholar
Marković, S.B., Stevens, T., Kukla, G.J., Hambach, U., Fitzsimmons, K.E., Gibbard, P., Buggle, B., et al., 2015. Danube loess stratigraphy – towards a pan-European loess stratigraphic model. Earth-Science Reviews 148, 228258.Google Scholar
Marshak, B.I., 2003. The Archaeology of Sogdiana. The Silk Road 1, 28.Google Scholar
Martignier, L., Nussbaumer, M., Adatte, T., Gobat, J.-M., Verrecchia, E.P., 2015. Assessment of a locally-sourced loess system in Europe: the Swiss Jura Mountains. Aeolian Research 18, 1121.Google Scholar
Mason, J.A., Jacobs, P.M., Hanson, P.R., Miao, X.D., Goble, R.J., 2003. Sources and paleoclimatic significance of Holocene Bignell Loess, central Great Plains, USA. Quaternary Research 60, 330339.Google Scholar
Mason, J.A., Joeckel, R.M., Bettis, E.A. III, 2007. Middle to Late Pleistocene loess record in eastern Nebraska, USA, and implications for the unique nature of Oxygen Isotope Stage 2. Quaternary Science Reviews 26, 773792.Google Scholar
Mason, J.A., Miao, X.D., Hanson, P.R., Johnson, W.C., Jacobs, P.M., Goble, R.J., 2008. Loess record of the Pleistocene-Holocene transition on the northern and central Great Plains, USA. Quaternary Science Reviews 27, 17721783.Google Scholar
Masson-Delmotte, V., Schulz, M., Abe-Ouchi, A., Beer, J., Ganopolski, A., González Rouco, J.F., Jansen, E., Lambeck, K., Luterbacher, J., Naish, T., Osborn, T., Otto-Bliesner, B., Quinn, T., Ramesh, R., Rojas, M., Shao, X., Timmermann, A., 2013. Information from Paleoclimate Archives. In: Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 383464.Google Scholar
Matasova, G., Petrovský, E., Jordanova, N., Zykina, V., Kapika, A., 2001. Magnetic study of Late Pleistocene loess/palaeosol sections from Siberia: palaeoenvironmental implications. Geophysical Journal International 147, 367380.Google Scholar
Matthews, N.E., Vasquez, J.A., Calvert, A.T., 2015. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals. Geochemistry, Geophysics, Geosystems 16, 25082528.Google Scholar
McLennan, S.M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems 2, 1021. http://dx.doi.org/10.1029/2000GC000109.Google Scholar
McTainsh, G., 1987. Desert loess in northern Nigeria. Zeitschrift für Geomorphologie N.F. 31, 145165.Google Scholar
Meszner, S., Kreutzer, S., Fuchs, M., Faust, D., 2014. Identifying depositional and pedogenetic controls of Late Pleistocene loess-palaeosol sequences (Saxony, Germany) by combined grain size and microscopic analyses. Zeitschrift für Geomorphologie, Supplementary. Issues 58, 6390.Google Scholar
Miao, X.D., Mason, J.A., Johnson, W.C., Wang, H., 2007. High-resolution proxy record of Holocene climate from a loess section in southwestern Nebraska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 368381.Google Scholar
Miller, B.B., Graham, R.W., Morgan, A.V., Norton, G.M., McCoy, W.D., Palmer, D.F., Smith, A.J., Pilny, J.J., 1994. A biota associated with Matuyama-age sediments in west-central Illinois. Quaternary Research 41, 350365.Google Scholar
Moine, O., 2014. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quaternary International 337, 90113.Google Scholar
Moine, O., Antoine, P., Hatté, C., Landais, A., Mathieu, J.C., Prud’homme, C., Rousseau, D., 2017. The impact of Last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. Proceedings of the National Academy of Sciences of the United States of America 114, 62096214.Google Scholar
Moine, O., Rousseau, D.-D., Jolly, D., Vianey-Liaud, M., 2002. Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks. Quaternary Research 57, 162172.Google Scholar
Moine, O., Rousseau, D.D., Antoine, P., 2008. The impact of Dansgaard-Oeschger cycles on the loessic environment and malacofauna of Nussloch (Germany) during the Upper Weichselian. Quaternary Research 70, 91104.Google Scholar
Mücher, H., Vreeken, W., 1981. (Re)deposition of loess in southern Limburg, The Netherlands. II. Micromorphology of the lower silt loam complex and comparison with deposits produced under laboratory conditions. Earth Surface Processes and Landforms 6, 355363.Google Scholar
Muhs, D.R., 2013a. The geologic records of dust in the Quaternary. Aeolian. Research 9, 348.Google Scholar
Muhs, D.R., 2013b. Loess and its geomorphic, stratigraphic, and paleoclimatic significance in the Quaternary. In: Shroder, J.F. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, pp. 149183.Google Scholar
Muhs, D.R., Ager, T.A., Been, J., Bradbury, J.P., Dean, W.E., 2003a. A late Quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska. Quaternary Research 60, 110122.Google Scholar
Muhs, D.R., Ager, T.A., Bettis, E.A., III, McGeehin, J., Been, J.M., Begét, J.E., Pavich, M.J., Stafford, T.W. Jr., Stevens, D.S.P., 2003b. Stratigraphy and paleoclimatic significance of late Quaternary loess-paleosol sequences of the last interglacial-glacial cycle in central Alaska. Quaternary Science Reviews 22, 19471986.Google Scholar
Muhs, D.R., Ager, T.A., Skipp, G., Beann, J., Budahn, J.R., McGeehin, J.P., 2008a. Paleoclimatic significance of chemical weathering in loess-derived paleosols of subarctic central Alaska. Arctic, Antarctic, and Alpine Research 40, 396411.Google Scholar
Muhs, D.R., Bettis, E.A. III, 2000. Geochemical variations in Peoria Loess of western Iowa indicate paleowinds of midcontinental North America during last glaciation. Quaternary Research 53, 4961.Google Scholar
Muhs, D.R., Bettis, E.A. III, 2003. Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. Geological Society of America Special Paper 370, 5374.Google Scholar
Muhs, D.R., Bettis, E.A. III, Aleinikoff, J.N., McGeehin, J.P., Beann, J., Skipp, G., Marshall, B.D., Roberts, H.M., Johnson, W.C., Benton, R., 2008b. Origin and paleoclimatic significance of late Quaternary loess in Nebraska: evidence from stratigraphy, chronology, sedimentology, and geochemistry. Geological Society of America Bulletin 120, 13781407.Google Scholar
Muhs, D.R., Bettis, E.A. III, Been, J., McGeehin, J., 2001. Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley. Soil Science Society of America Journal 65, 17611777.Google Scholar
Muhs, D.R., Bettis, E.A. III, Roberts, H.M., Harlan, S.S., Paces, J.B., Reynolds, R.L., 2013a. Chronology and provenance of last-glacial (Peoria) loess in western Iowa and paleoclimatic implications. Quaternary Science Reviews 80, 468481.Google Scholar
Muhs, D.R., Budahn, J.R., 2006. Geochemical evidence for the origin of late Quaternary loess in central Alaska. Canadian Journal of Earth Sciences 43, 323337.Google Scholar
Muhs, D.R., Budahn, J., Johnson, D.L., Rehis, M., Beann, J., Skipp, G., Fisher, E., Jones, J.A., 2008c. Geochemical evidence for airborne dust additions to soils in Channel Islands National Park, California. Geological Society of America Bulletin 120, 106126.Google Scholar
Muhs, D.R., Budahn, J.R., McGeehin, J.P., Bettis, E.A. III, Skipp, G., Paces, J.B., Wheeler, E.A., 2013b. Loess origin, transport, and deposition over the past 10,000 years, Wrangell-St. Elias National Park, Alaska. Aeolian Research 11, 8599.Google Scholar
Muhs, D.R., Budahn, J., Reheis, M., Beann, J., Skipp, G., Fisher, E., 2007. Airborne dust transport to the eastern Pacific Ocean off southern California: evidence from San Clemente Island. Journal of Geophysical Research 112, D13203. http://dx.doi.org/10.1029/2006JD007577.Google Scholar
Muhs, D.R., Budahn, J.R., Skipp, G.L., McGeehin, J.P., 2016. Geochemical evidence for seasonal controls on the transportation of Holocene loess, Matanuska Valley, southern Alaska, USA. Aeolian Research 21, 6173.Google Scholar
Muhs, D.R., McGeehin, J.P., Beann, J., Fisher, E., 2004. Holocene loess deposition and soil formation as competing processes, Matanuska Valley, southern Alaska. Quaternary Research 61, 265276.Google Scholar
Muhs, D.R., Pigati, J.S., Budahn, J.R., Skipp, G.L., Bettis, E.A. III, Jensen, B., 2018. Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA. Quaternary Research (in press).Google Scholar
Muhs, D.R., Roskin, J., Tsoar, H., Skipp, G., Budahn, J.R., Sneh, A., Porat, N., Stanley, J.-D., Katra, I., Blumberg, D.G., 2013c. Origin of the Sinai–Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history. Quaternary Science Reviews 69, 2848.Google Scholar
Munroe, J.S., Attwood, E.C., O’Keefe, S.S., Quackenbush, P.J.M., 2015. Eolian deposition in the alpine zone of the Uinta Mountains, Utah, USA. Catena 124, 119129.Google Scholar
Nagashima, K., Tada, R., Tani, A., Toyoda, S., Sun, Y., Isozaki, Y., 2007. Contribution of aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz. Geochemistry Geophysics Geosystems, 8. doi: 10.1029/2006GC001364. Google Scholar
Nagashima, K., Tada, R., Tani, A., Sun, Y., Isozaki, Y., Toyoda, S., Hasegawa, H., 2011. Millennial-scale oscillations of the westerly jet path during the last glacial period. Journal of Asian Earth Sciences 40, 12141220.Google Scholar
Nash, T.A., Conroy, J.L., Grimley, D.A., Guenthner, W.R., Curry, B.B., 2017. Episodic deposition of Illinois Valley Peoria Silt in association with Lake Michigan Lobe fluctuations during the last glacial maximum. Quaternary Research (in press). https://doi.org/10.1017/qua.2017.66.Google Scholar
Nawrocki, J., Polechonska, O., Boguckij, A., Lanczont, M., 2006. Palaeowind directions recorded in the youngest loess in Poland and western Ukraine as derived from anisotropy of magnetic susceptibility measurements. Boreas 35, 266271.Google Scholar
Necula, C., Dimofte, D., Panaiotu, C., 2015. Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania). Geophysical Journal International 202, 17331748.Google Scholar
Nekola, J.C., Coles, B.F., 2010. Pupillid land snails of eastern North America. American Malacological Bulletin 28, 2957.Google Scholar
Nelson, M.S., Rittenour, T.M., 2015. Using grain-size characteristics to model soil water content: application to dose-rate calculation for luminescence dating. Radiation Measurements 81, 142149.Google Scholar
Nie, J., Song, Y., Möller, A., Stockli, D.F., Peng, W., Stevens, T., Bird, A., Oalmann, J., Liu, S., Horton, B.K., Fang, X., 2014. Provenance of the upper Miocene–Pliocene Red Clay deposits of the Chinese loess plateau. Earth and Planetary Science Letters 407, 3547.Google Scholar
Nie, J., Stevens, T., Rittner, M., Stockli, D., Garzanti, E., Limonta, M., Bird, A., et al., 2015. Loess Plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications 6, 8511. http://dx.doi.org/10.1038/ncomms9511.Google Scholar
North Greenland Ice Core Project Members, Andersen, K.K., Azuma, N., Barnola, J.-M., Bigler, M., Biscaye, P., Caillon, N., et al., 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147151.Google Scholar
Nottebaum, V., Stauch, G., Hartmann, K., Zhang, J., Lehmkuhl, F., 2015. Unmixed loess grain size populations along the northern Qilian Shan (China): relationships between geomorphologic, sedimentologic and climatic controls. Quaternary International 372, 151166.Google Scholar
Novothny, A., Frechen, M., Horváth, E., Wacha, L., Rolf, C., 2011. Investigating the penultimate and last glacial cycles of the Süttö loess section (Hungary) using luminescence dating, high-resolution grain size, and magnetic susceptibility data. Quaternary International 234, 7585.Google Scholar
Nowaczyk, B., 1986. The Age of Dunes, Their Textural and Structural Properties against Atmospheric Circulation Pattern of Poland during the Late Vistulian and Holocene. Seria Geografia 28. Adam Mickiewicz University Press, Poznań, Poland.Google Scholar
Nugteren, G., Vandenberghe, J., 2004. Spatial climatic variability on the Central Loess Plateau (China) as recorded by grain size for the last 250 kyr. Global and Planetary Change 41, 185206.Google Scholar
Nyland, K.E., Schaetzl, R.J., Ignatov, A., Miller, B.A., 2017. A new depositional model for sand-rich loess on the Buckley Flats outwash plain, northwestern Lower Michigan. Aeolian Research (in press). https://doi.org/10.1016/j.aeolia.2017.05.005.Google Scholar
Obreht, I., Buggle, B., Catto, N., Marković, S.B., Bösel, S., Vandenberghe, D.A.G., Hambach, U., et al., 2014. The Late Pleistocene Belotinac section (southern Serbia) at the southern limit of the European loess belt: environmental and climate reconstruction using grain size and stable C and N isotopes. Quaternary International 334–335, 1019.Google Scholar
Obreht, I., Hambach, U., Veres, D., Zeeden, C., Bösken, J., Stevens, T., Marković, S.B., et al., 2017. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for Modern Human dispersal. Scientific Reports 7, 5848. http://dx.doi.org/10.1038/s41598-017-06285-x.Google Scholar
Obreht, I., Zeeden, C., Hambach, U., Veres, D., Marković, S.B, Bösken, J., Svirčev, Z., Bačević, N., Gavrilov, M.B., Lehmkuhl, F., 2016. Tracing the influence of Mediterranean climate on southeastern Europe during the past 350,000 years. Scientific Reports 6, 36334. http://dx.doi.org/10.1038/srep36334.Google Scholar
Obreht, I., Zeeden, C., Schulte, P., Hambach, U., Eckmeier, E., Timar-Gabor, A., Lehmkuhl, F., 2015. Aeolian dynamics at the Orlovat loess–paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence. Aeolian Research 18, 6981.Google Scholar
Oches, E.A., Banerjee, S.K., Solheid, P.A., Frechen, M., 1998. High resolution proxies of climate variability in the Alaskan loess record. In: Busacca, A.J. (Ed.), Dust Aerosols, Loess Soils and Global Change. Miscellaneous Publication No. MISC0190. Washington State University, College of Agriculture and Home Economics, Pullman, pp. 167170.Google Scholar
Oches, E.A., McCoy, W.D., 2001. Historical developments and recent advances in amino acid geochronology applied to loess research: examples from North America, Europe, and China. Earth-Science Reviews 54, 173192.Google Scholar
Owczarek, P., Opała-Owczarek, M., Rahmonov, O., Razzokov, A., Jary, Z., Niedźwiedź, T., 2017. Relationships between loess and the Silk Road reflected by environmental change and its implications for human societies in the area of ancient Panjikent, Central Asia. Quaternary Research (in press). https://doi.org/10.1017/qua.2017.69.Google Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quaternary Science Reviews 88, 1454.Google Scholar
Paepe, R., 1966. Comparative stratigraphy of Würm loess deposits in Belgium and Austria. Bulletin de la Société Belgique de Géologie 75, 203216.Google Scholar
Paepe, R., Sommé, J., 1970. Les loess et la stratigraphiedu Pleistocène récent dans le nord de la France et en Belgique. Annales Société Géologique du Nord 90, 191201.Google Scholar
Palmer, A.S., Pillans, B.J., 1996. Record of climatic fluctuations from ca. 500 ka loess deposits and paleosols near Wanganui, New Zealand. Quaternary International 34–36, 155162.Google Scholar
Parés, J.M., 2015. Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks. Frontiers in Earth Science 3, 4. https://doi.org/10.3389/feart.2015.00004.Google Scholar
Patton, H., Hubbard, A., Andreassen, K., Winsborrow, M., Stroeven, A.P., 2016. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quaternary Science Reviews 153, 97121.Google Scholar
Pécsi, M., 1966. Löss und lössartige Sedimente im Karpatenbecken und ihre lithostratigraphischen Gliederung. Petermanns Geographische Mitteilungen 110, 176189, 241–252.Google Scholar
Pécsi, M., 1985. Chronostratigraphy of Hungarian loesses and the underlying subaerial formation. In: Pécsi, M. (Ed.), Loess and the Quaternary: Chinese and Hungarian Case Studies. Studies in Geography in Hungary 18. Akadémiai Kiadó, Budapest, pp. 3349.Google Scholar
Peterse, F., Martínez-García, A., Zhou, B., Beets, C.J., Prins, M.A., Zheng, H., Eglinton, T.I., 2014. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years. Quaternary Science Reviews 83, 7682.Google Scholar
Péwé, T.L., 1955. Origin of the upland silt near Fairbanks, Alaska. Geological Society of America Bulletin 66, 699724.Google Scholar
Péwé, T.L., 1975. Quaternary Geology of Alaska. U.S. Geological Survey Professional Paper 835. U.S. Government Printing Office, Washington, DC.Google Scholar
Péwé, T.L., Berger, G.W., Westgate, J.A., Brown, P.M., Leavitt, S.W., 1997. Eva Interglaciation Forest Bed, Unglaciated East-Central Alaska: Global Warming 125,000 Years Ago. Geological Society of America Special Paper 319. Geological Society of America, Boulder, CO.Google Scholar
Pfannenstiel, M., 1950. Die Quartärgeschichte des Donaudeltas. Bonner Geographische Abhandlungen, Bonn, Germany.Google Scholar
Pickering, R., Jacobs, Z., Herries, A.I.R., Karkanas, P., Bar-Matthews, M., Woodhead, J.D., Kappen, P., Fisher, E., Marean, C.W., 2013. Paleoanthropologically significant South African sea caves dated to 1.1–1.0 million years using a combination of U–Pb, TT-OSL and palaeomagnetism. Quaternary Science Reviews 65, 3952.Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Bettis, E.A., 2013. Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells. Quaternary Science Reviews 76, 114128.Google Scholar
Pigati, J.S., McGeehin, J.P., Muhs, D.R., Grimley, D.A., Nekola, J.C., 2015. Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae, and Discidae). Aeolian Research 16, 2533.Google Scholar
Pigati, J.S., Rech, J.A., Nekola, J.C., 2010. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, 519532.Google Scholar
Porter, D., Bishop, S., 1990. Soil and lithostratigraphy below the Loveland/Sicily Island silt, Crowley’s Ridge, Arkansas. Proceedings of the Arkansas Academy of Science 44, 8690.Google Scholar
Porter, S.C., An, Z.S., 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305308.Google Scholar
Prasad, A.K., Poolton, N.R.J., Kook, M., Jain, M., 2017. Optical dating in a new light: a direct, non-destructive probe of trapped electrons. Scientific Reports 7, 12097. http://dx.doi.org/10.1038/s41598-017-10174-8.Google Scholar
Preece, S.J., Westgate, J.A., Stemper, B.A., Péwé, T.L., 1999. Tephrochonology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin 111, 7190.Google Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H., Weltje, G.J., 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26, 230242.Google Scholar
Prud’Homme, C., Antoine, P., Moine, O., Turpin, E., Huguenard, L., Robert, V., Degeai, J.-P., 2015. Earthworm calcite granules: a new tracker of millennial-timescale environmental changes in Last Glacial loess deposits. Journal of Quaternary Science 30, 529536.Google Scholar
Prud'homme, C., Lecuyer, C., Antoine, P., Moine, O., Hatté, C., Fourel, F., Martineau, F., Rousseau, D.-D., 2016. Palaeotemperature reconstruction during the Last Glacial from dO18 of earthworm calcite granules from Nussloch loess sequence, Germany. Earth and Planetary Science Letters 442, 1320.Google Scholar
Prud'homme, C., 2017. Les granules de calcite de vers de terre, un support innovant pour la reconstitution du paléoclimat du Dernier Glaciaire en millieu loessique européen: Application à l'étude des interactions Homme-Environnement au Paléolithique, Ecole doctorale: Géographie paris. Université Paris 1 Panthéon Sorbonne, Paris. p. 270.Google Scholar
Pullen, A., Ibáñez-Mejia, M., Gehrels, G.E., Ibáñez-Mejia, J.C., Pecha, M., 2014. What happens when n = 1000? Creating large-n geochronological datasets with LA-ICP-MS for geological investigations. Journal of Analytical Atomic Spectrometry 29, 971980.Google Scholar
Pullen, A., Kapp, P., McCallister, A.T., Chang, H., Gehrels, G.E., Garzione, C.N., Heermance, R.V., Ding, L., 2011. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39, 10311034.Google Scholar
Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653667.Google Scholar
Pye, K., Johnson, R., 1988. Stratigraphy, geochemistry, and thermoluminescence ages of Lower Mississippi valley loess. Earth Surface Processes and Landforms 13, 103124.Google Scholar
Pye, K., Zhou, L.P., 1989. Late Pleistocene and Holocene aeolian dust deposition in north China and the northwest Pacific Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 73, 1123.Google Scholar
Rech, J.A., Nekola, J.C., Pigati, J.S., 2012. Radiocarbon ages of terrestrial gastropods extend duration of ice-free conditions at the Two Creeks forest bed, Wisconsin, USA. Quaternary Research 77, 289292.Google Scholar
Reger, R.D., Pinney, D.S., Burke, R.M., Wiltse, M.A., 1996. Catalog and Initial Analyses of Geologic Data Related to Middle to Late Quaternary Deposits, Cook Inlet Region, Alaska. Report of Investigations 95-6. State of Alaska, Department of Natural Resources, Division of Geological and Geophysical Surveys, Fairbanks, AK.Google Scholar
Renssen, H., Kasse, C., Vandenberghe, J., Lorenz, S.J., 2007. Weichselian Late Pleniglacial surface winds over northwest and central Europe: a model-data comparison. Journal of Quaternary Science 22, 281293.Google Scholar
Rex, R.W., Syers, J.K., Jackson, M.L., Clayton, R.N., 1969. Eolian origin of quartz in soils of the Hawaiian Islands and in Pacific pelagic sediments. Science 163, 277279.Google Scholar
Roberts, H.M., 2008. The development and application of luminescence dating to loess deposits: a perspective on the past, present and future. Boreas 37, 483507.Google Scholar
Roberts, H.M., Muhs, D.R., Wintle, A.G., Duller, G.A.T., Bettis, E.A. III, 2003. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska. Quaternary Research 59, 411419.Google Scholar
Rodbell, D.T., Forman, S.L., Pierson, J., Lynn, W.C., 1997. Stratigraphy and chronology of Mississippi Valley loess in western Tennessee. Geological Society of America Bulletin 109, 11341148.Google Scholar
Roering, J.J., Almond, P., Tonkin, P., McKean, J., 2002. Soil transport driven by biological processes over millennial time scales. Geology 30, 11151118.Google Scholar
Rossignol, J., Moine, O., Rousseau, D.D., 2004. The Buzzard’s Roost and Eustis mollusc sequences: comparison between the paleoenvironments of two sites in the Wisconsinan loess of Nebraska, USA. Boreas 33, 145154.Google Scholar
Rousseau, D.D., 1987. Paleoclimatology of the Achenheim series (middle and upper Pleistocene, Alsace, France). A malacological analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 59, 293314.Google Scholar
Rousseau, D.D., 1991. Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 36, 195209.Google Scholar
Rousseau, D.D., 2001. Loess biostratigraphy: new advances and approaches in mollusc studies. Earth-Science Reviews 54, 157171.Google Scholar
Rousseau, D.D., Antoine, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Othman, D.B., et al., 2002. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation. Quaternary Science Reviews 21, 15771582.Google Scholar
Rousseau, D.D., Antoine, P., Gerasimenko, N., Sima, A., Fuchs, M., Hatte, C., Moine, O., Zoeller, L., 2011. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Climate of the Past 7, 221234.Google Scholar
Rousseau, D.D., Boers, N., Sima, A., Svensson, A., Bigler, M., Lagroix, F., Taylor, S., Antoine, P., 2017a. (MIS3 & & 2) millennial oscillations in Greenland dust and Eurasian aeolian records – a paleosol perspective. Quaternary Science Reviews 169, 99113.Google Scholar
Rousseau, D.-D., Chauvel, C., Sima, A., Hatte, C., Lagroix, F., Antoine, P., Balkanski, Y., et al., 2014. European glacial dust deposits: geochemical constraints on atmospheric dust cycle modeling. Geophysical Research Letters 41, 76667674.Google Scholar
Rousseau, D.-D., Derbyshire, E., Antoine, P., Hatté, C., 2013. Loess records – Europe. In: Elias, S.A., Mock, C.J. (Ed.), Encyclopedia of Quaternary Science. 2nd ed. Elsevier, Amsterdam, pp. 606619.Google Scholar
Rousseau, D.D., Gerasimaenko, N., Matvviishina, Z., Kukla, G.J., 2001. Late Pleistocene environments of central Ukraine. Quaternary Research 56, 349356.Google Scholar
Rousseau, D.-D., Kukla, G., 1994. Late Pleistocene climate record in the Eustis loess section, Nebraska, based on land snail assemblages and magnetic susceptibility. Quaternary Research 42, 176187.Google Scholar
Rousseau, D.-D., Sima, A., Antoine, P., Hatté, C., Lang, A., Zöller, L., 2007. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophysical Research Letters 34, L22713. http://dx.doi.org/10.1029/2007GL031716.Google Scholar
Rousseau, D.-D., Svensson, A., Bigler, M., Sima, A., Steffensen, J. P., Boers, N., 2017b. Eurasian contribution to the last glacial dust cycle: how are loess sequences built? Climate of the Past 13, 11811197.Google Scholar
Rousseau, D.D., Wu, N., Guo, Z.T., 2000. The terrestrial mollusks as new indices of the Asian paleomonsoons in the Chinese loess plateau. Global and Planetary Change 26, 199206.Google Scholar
Rousseau, D.D., Wu, N., Pei, Y., Li, F., 2009. Three exceptionally strong East-Asian summer monsoon events during glacial times in the past 470 kyr. Climate of the Past 5, 157169.Google Scholar
Roxby, P.M., 1938. The terrain of early Chinese civilization. Geography 23, 225236.Google Scholar
Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S. (Eds.), Climate Change in Continental Isotopic Records. Geophysical Monograph 78. American Geophysical Union, Washington, DC, pp. 136.Google Scholar
Ruegg, G.H.J., 1983. Periglacial eolian evenly laminated sandy deposits in the Late Pleistocene of N.W. Europe, a facies unrecorded in modern sedimentological handbooks. In: Brookfield, M.E., Ahlbrandt, T.S. (Eds.), Eolian Sediments and Processes. Elsevier, Amsterdam, pp. 455482.Google Scholar
Ruhe, R.V., 1954. Relations of the properties of Wisconsin loess to topography in western Iowa. American Journal of Science 252, 663672.Google Scholar
Ruhe, R.V., 1973. Background of model for loess-derived soils in the upper Mississippi River basin. Soil Science 115, 250253.Google Scholar
Ruocco, M., 1989. A 3 Ma paleomagnetic record of coastal continental deposits in Argentina. Palaeoecology, Palaeogeography, Palaeoclimatology 72, 105113.Google Scholar
Rutledge, E.M., Guccione, M.J., Markewich, H.W., Wysocki, D.A., Ward, L.B., 1996. Loess stratigraphy of the Lower Mississippi Valley. Engineering Geology 45, 167183.Google Scholar
Rutledge, E.M., Holowaychuk, N., Hall, G.F., Wilding, L.P., 1975. Loess in Ohio in relation to several possible source areas: I. Physical and chemical properties. Soil Science Society of America Journal 39, 11251132.Google Scholar
Rutter, N.W., Ding, Z.L., 1993. Paleoclimates and monsoon variations interpreted from micromorphogenic features of the Baoji paleosols, China. Quaternary Science Reviews 12, 853862.Google Scholar
Rutter, N.W., Ding, Z.L., Evans, M.E., Liu, T.S., 1991. Baoji-type pedostratigraphic section, Loess Plateau, north-central China. Quaternary Science Reviews 10, 122.Google Scholar
Sanborn, P.T., Smith, C.A.S., Froese, D.G., Zazula, G.D., Westgate, J.A., 2006. Full-glacial paleosols in perennially frozen loess sequences, Klondike goldfields, Yukon Territory, Canada. Quaternary Research 66, 147157.Google Scholar
Sarianidi, V., 1992. Food-producing and other Neolithic communities in Khorasan and Transoxania: eastern Iran, Soviet Central Asia and Afghanistan. In: Dani, A.H., Masson, V.M. (Eds.), History of Civilizations of Central Asia. Vol. 1, The Dawn of Civilization: Earliest Times to 700 B.C. UNESCO, Paris, pp. 105122.Google Scholar
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., Pflaumann, U., 1981. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature (London) 293, 193196.Google Scholar
Sayago, J.M., 1983. Geología de la Sierra de Ancasti-16. Geomorfología de la Sierra de Ancasti (Argentina). Münstersche Forschungenzur Geologie und Paläeontologie 59, 265284.Google Scholar
Schaetzl, R.J., 1998. Lithologic discontinuities in some soils on drumlins: theory, detection, and application. Soil Science 163, 570590.Google Scholar
Schaetzl, R.J., 2008. The distribution of silty soils in the Grayling Fingers region of Michigan: evidence for loess deposition onto frozen ground. Geomorphology 102, 287296.Google Scholar
Schaetzl, R.J., Attig, J.W., 2013. The loess cover of northeastern Wisconsin. Quaternary Research 79, 199214.Google Scholar
Schaetzl, R.J., Hook, J., 2008. Characterizing the silty sediments of the Buckley Flats outwash plain: evidence for loess in NW Lower Michigan. Physical Geography 29, 118.Google Scholar
Schaetzl, R.J., Larson, P.H., Faulkner, D.J., Running, G.L., Jol, H.M., Rittenour, T.M., 2017. Eolian sand and loess deposits indicate west-northwest paleowinds during the Late Pleistocene in western Wisconsin, USA. Quaternary Research (in press). https://doi.org/10.1017/qua.2017.88.Google Scholar
Schaetzl, R.J., Loope, W.L., 2008. Evidence for an eolian origin for the silt-enriched soil mantles on the glaciated uplands of eastern Upper Michigan, USA. Geomorphology 100, 285295.Google Scholar
Schaetzl, R.J., Luehmann, M.D., 2013. Coarse-textured basal zones in thin loess deposits: products of sediment mixing and/or paleoenvironmental change? Geoderma 192, 277285.Google Scholar
Schaetzl, R.J., Weisenborn, B.N., 2004. The Grayling Fingers geomorphic region of Michigan: soils, sedimentology, stratigraphy and geomorphic development. Geomorphology 61, 251274.Google Scholar
Schäfer, I., Bliedtner, M., Wolf, D., Faust, D., Zech, R., 2016a. Evidence for humid conditions during the last glacial from leaf wax patterns in the loess-paleosol sequence El Paraíso, central Spain. Quaternary International 407A, 6473.Google Scholar
Schäfer, I., Lanny, V., Franke, J., Eglinton, T., Zech, M., Vysloužilová, B., Zech, R., 2016b. Leaf waxes in litter and topsoils along a European transect. Soil 2, 551564.Google Scholar
Schatz, A.-K., Qi, Y., Siebel, W., Wu, J., Zöller, L., 2015. Tracking potential source areas of central European loess: examples from Tokaj (HU), Nussloch (D) and Grub (AT). Open Geoscience 7, 678720.Google Scholar
Schatz, A.-K., Zech, M., Buggle, B., Gulyas, S., Hambach, U., Markovic, S., Sümegi, P., Scholten, T., 2011. The late Quaternary loess record of Tokaj, Hungary: reconstructing palaeoenvironment, vegetation and climate using stable C and N isotopes and biomarkers. Quaternary International 240, 5261.Google Scholar
Scheib, A.J., Birke, M., Dinelli, E., 2013. Geochemical evidence of aeolian deposits in European soils. Boreas 43, 175192.Google Scholar
Schirmer, W., 2016. Late Pleistocene loess of the lower Rhine. Quaternary International 411, 4461.Google Scholar
Schreuder, L., Beets, C., Prins, M., Hatté, C., Peterese, F., 2016. Late Pleistocene climate evolution in southeastern Europe recorded by soil bacterial membrane lipids in Serbian loess. Palaeogeography, Palaeoclimatology, Palaeoecology 449, 141148.Google Scholar
Schwan, J., 1988. The structure and genesis of Weichselian to Early Holocene aeolian sand sheets in western Europe. Sedimentary Geology 55, 197232.Google Scholar
Schwan, J., 1991. Palaeowetness indicators in a Weichselian Late Glacial to Holocene aeolian succession in the southwestern Netherlands. Zeitschrift für Geomorphologie, Supplementband 90, 155169.Google Scholar
Scull, P., Schaetzl, R.J., 2011. Using PCA to characterize and differentiate the character of loess deposits in Wisconsin and Upper Michigan, USA. Geomorphology 127, 143155.Google Scholar
Shackleton, N.J., An, Z., Dodonov, A.E., Gavin, J., Kukla, G.J., Ranov, V.A., Zhou, L.P., 1995. Accumulation rate of loess in Tajikistan and China: relationship with global ice volume cycles. Quaternary Proceedings 4, 16.Google Scholar
Shang, Y., Beets, C.J., Tang, H., Prins, M., Lahaye, Y., van Elsas, R., Sukselainen, L., Kaakinen, A., 2016. Variations in the provenance of the late Neogene Red Clay deposits in northern China. Earth and Planetary Science Letters 439, 88100.Google Scholar
Shimek, B., 1899. The distribution of loess fossils. Journal of Geology 7, 122140.Google Scholar
Sima, A., Kageyama, M., Rousseau, D.D., Ramstein, G., Balkanski, Y., Antoine, P., Hatté, C., 2013. Modeling dust emission response to North Atlantic millennial-scale climate variations from the perspective of East European MIS3 loess deposits. Climate of the Past 9, 13851402.Google Scholar
Sima, A., Rousseau, D.D., Kageyama, M., Ramstein, G., Schulz, M., Balkanski, Y., Antoine, P., Dulac, F., Hatte, C., 2009. Imprint of North-Atlantic abrupt climate changes on western European loess deposits as viewed in a dust emission model. Quaternary Science Reviews 28, 28512866.Google Scholar
Simmons, A.H., 2011. The Neolithic Revolution in the Near East. University of Arizona Press, Tucson.Google Scholar
Simonson, R.W., 1995. Airborne dust and its significance to soils. Geoderma 65, 143.Google Scholar
Sitzia, L., Bertran, P., Bahain, J.-J., Bateman, M.D., Hernandez, M., Garon, H., de Lafontaine, G., et al., 2015. The Quaternary coversands of southwest France. Quaternary Science Reviews 124, 84105.Google Scholar
Sláma, J., Košla, J., 2012. Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems 13, Q05007. http://dx.doi.org/10.1029/2012GC004106.Google Scholar
Smalley, I., 1995. Making the material: the formation of silt sized primary mineral particles for loess deposits. Quaternary Science Reviews 14, 645651.Google Scholar
Smalley, I., O’Hara-Dhand, K., Kwong, J., 2014. China: materials for a loess landscape. Catena 117, 100107.Google Scholar
Smalley, I., O’Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., Jefferson, I., 2009. Rivers and loess: the significance of long river transportation in the complex event-sequence approach to loess deposit formation. Quaternary International 198, 718.Google Scholar
Smalley, I.J., 1968. The loess deposits and Neolithic culture of northern China. Man (new series) 3, 224241.Google Scholar
Smalley, I.J., Krinsley, D.H., 1978. Loess deposits associated with deserts. Catena 5, 5366.Google Scholar
Smalley, I.J., Leach, J.A., 1978. The origin and distribution of the loess in the Danube basin and associated regions of east-central Europe—a review. Sedimentary Geology 21, 126.Google Scholar
Smalley, I.J., Marković, S.B., O’Hara-Dhand, K., 2010. The INQUA Loess Commission as a central European enterprise. Central European Journal of Geosciences 2, 38.Google Scholar
Smalley, I.J., Mavlyanova, N.G., Rakhmatullaev, K.L., Shermatov, M.S., Machalett, B., O’Hara Dhand, K., Jefferson, I.F., 2006. The formation of loess deposits in the Tashkent region and parts of central Asia; and problems with irrigation, hydrocollapse and soil erosion. Quaternary International 152–153, 5969.Google Scholar
Smith, B.J., Wright, J.S., Whalley, W.B., 2002. Sources of non-glacial, loess-size quartz silt and the origins of “desert loess.” Earth-Science Reviews 59, 126.Google Scholar
Smith, G.D., 1942. Illinois Loess: Variations in Its Properties and Distribution. University of Illinois Agricultural Experiment Station Bulletin 490. University of Illinois, Urbana.Google Scholar
Song, Y., Guo, Z., Marković, S., Hambach, U., Deng, C., Chang, L., Wu, J., Hao, Q., 2018. Magnetic stratigraphy of the Danube loess: a composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. Journal of Asian Earth Sciences 155, 6880.Google Scholar
Song, Y., Hao, Q.Z., Ge, J.Y., Zhao, D.A., Zhang, Y., Li, Q., Zuo, X.X., , Y.W., Wang, P., 2014. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International 334, 119131.Google Scholar
Song, Y., Lai, Z., Li, Y., Chen, T., Wang, Y., 2015. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in central Asia. Quaternary Geochronology 30, 405410.Google Scholar
Sprafke, T., Obreht, I., 2016. Loess: rock, sediment or soil – what is missing for its definition? Quaternary International 399, 198207.Google Scholar
Stanley, K.E., Schaetzl, R.J., 2011. Characteristics and paleoenvironmental significance of a thin, dual-sourced loess sheet, north-central Wisconsin. Aeolian Research 2, 241251.Google Scholar
Stevens, T., Adamiec, G., Bird, A.F., Lu, H., 2013a. An abrupt shift in dust source on the Chinese Loess Plateau revealed through high sampling resolution OSL dating. Quaternary Science Reviews 82, 121132.Google Scholar
Stevens, T., Armitage, S.J., Lu, H., Thomas, D.S.G., 2006. Sedimentation and diagenesis of Chinese loess: Implications for the preservation of continuous high-resolution climate records. Geology 34, 849852.Google Scholar
Stevens, T., Buylaert, J.-P., Lu, H., Thiel, C., Murray, A., Frechen, M., Yi, S., Zeng, L., 2016. Mass accumulation rate and monsoon records from Xifeng, Chinese Loess Plateau, based on a luminescence age model. Journal of Quaternary Science 31, 391405.Google Scholar
Stevens, T., Carter, A., Watson, T.P., Vermeesch, P., Andò, S., Bird, A.F., Lu, H., Garzanti, E., Cottam, M.A., Sevastjanova, I., 2013b. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau. Quaternary Science Reviews 78, 355368.Google Scholar
Stevens, T., Lu, H., Thomas, D.S.G., Armitage, S.J., 2008. Optical dating of abrupt shifts in the Late Pleistocene East Asian monsoon. Geology 36, 415418.Google Scholar
Stevens, T., Palk, C., Carter, A., Lu, H.Y., Clift, P.D., 2010. Assessing the provenance of loess and desert sediments in northern China using U-Pb dating and morphology of detrital zircons. Geological Society of America Bulletin 122, 13311344.Google Scholar
Stiglitz, B.C., Banerjee, S.K., Gourlan, A., Oches, E., 2006. A multi-proxy study of Argentina loess: marine oxygen isotope stage 4 and 5 environmental record from pedogenic hematite. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 4562.Google Scholar
Stott, L.D., 2002. The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Science Letters 195, 249259.Google Scholar
Stuut, J.-B., Smalley, I., O’Hara-Dhand, K., 2009. Aeolian dust in Europe: African sources and European deposits. Quaternary International 198, 234345.Google Scholar
Sun, D., Bloemendal, J., Rea, D.K., Vandenberghe, J., Jiang, F., An, Z., Su, R., 2002. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of sedimentary components. Sedimentary Geology 152, 262277.Google Scholar
Sun, J., 2002a. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau. Earth and Planetary Science Letters 203, 845859.Google Scholar
Sun, J., 2002b. Source regions and formation of the loess sediments on the high mountain regions of northwestern China. Quaternary Research 58, 341351.Google Scholar
Sun, J.M., Liu, T.S., 2000. Stratigraphic evidence for the uplift of the Tibetan Plateau between ~1.1 and ~0.9 Myr ago. Quaternary Science Reviews 54, 309320.Google Scholar
Sun, Y., An, Z., 2005. Late-Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. Journal of Geophysical Research: Atmospheres 110, D23101. http://dx.doi.org/10.1029/2005JD006064.Google Scholar
Sun, Y., Clemens, S.C., An, Z., Yu, Z., 2006. Astronomic timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25, 3348.Google Scholar
Sun, Y., Clemens, S.C., Morrill, C., Lin, X., Wang, X., An, Z., 2012. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience 5, 4649.Google Scholar
Sun, Y.B., Qiang, X.K., Liu, Q.S., Bloemendal, J., Wang, X.L., 2013. Timing and lock-in effect of the Laschamp geomagnetic excursion in Chinese loess. Geochemistry, Geophysics, Geosystems 14, 49524961.Google Scholar
Svirčev, Z., Marković, S.B., Stevens, T., Codd, G., Smalley, I., Simeunović, J., Obreht, I., Dulić, T., Pantelić, D., Hambach, U., 2013. Importance of biological loess crusts for loess formation in semi-arid environments. Quaternary International 296, 206215.Google Scholar
Sweeney, M.R., Mason, J.A., 2013. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, U.S.A. Journal of Geophysical Research-Earth Surface 118, 112.Google Scholar
Swinehart, J.B., Souders, V.L., De Graw, H.M., Diffendal, R.F. Jr., 1985. Cenozoic paleogeography of western Nebraska. In: Flores, R.M., Kaplan, S.S. (Eds.), Cenozoic Paleogeography of West-Central United States. Rocky Mountain Section. Society of Economic Paleontologists and Mineralogists, Denver, CO, pp. 209229.Google Scholar
Taber, S., 1943. Perennially frozen ground in Alaska: its origin and history. Geological Society of America Bulletin 54, 14331548.Google Scholar
Taber, S., 1953. Origin of Alaska silts. American Journal of Science 251, 321336.Google Scholar
Taber, S., 1958. Complex origin of silts in the vicinity of Fairbanks, Alaska. Geological Society of America Bulletin 69, 131136.Google Scholar
Tanner, S., Katra, I., Haim, A., Zaady, E., 2016. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices. Soil and Tillage Research 155, 149156.Google Scholar
Tarling, D.H., Hrouda, F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London.Google Scholar
Taylor, S.N., Lagroix, F., 2015. Magnetic anisotropy reveals the depositional and postdepositional history of a loess-paleosol sequence at Nussloch (Germany). Journal of Geophysical Research: Solid Earth 120, 28592876.Google Scholar
Taylor, S.N., Lagroix, F., Rousseau, D.D., Antoine, P., 2014. Mineral magnetic characterization of the Upper Pleniglacial Nussloch loess sequence (Germany): an insight into local environmental processes. Geophysical Journal International 199, 14631480.Google Scholar
Taylor, SR, McLennan, SM, 1985. The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, 312 p.Google Scholar
Taylor, S.R., McLennan, S.M., McCulloch, M.T., 1983. Geochemistry of loess, continental crustal composition and crustal modal ages. Geochemica et Cosmochimica Acta 47, 18971905.Google Scholar
Terhorst, B., Thiel, C., Peticzka, R., Sprafke, T., Frechen, M., Fladerer, F.A., Roetzel, R., Neugebauer-Maresch, C., 2011. Casting new light on the chronology of the loess/paleosol sequences in Lower Austria. E&G – Quaternary Science Journal 60, 270277.Google Scholar
Thomas, E.K., Clemens, S.C., Sun, Y., Prell, W.L., Huang, Y., Gao, L., Loomis, S., Chen, G., Liu, Z., 2016. Heterodynes dominate precipitation isotopes in the East Asian monsoon region, reflecting interaction of multiple climate factors. Earth and Planetary Science Letters 455, 196206.Google Scholar
Thorp, J., Smith, H.T.U., 1952. Pleistocene Eolian Deposits of the United States, Alaska, and Parts of Canada. National Research Council Committee for the Study of Eolian Deposits, Geological Society of America, 1:2,500,000 scale map. Geological Society of America, New York.Google Scholar
Timar-Gabor, A., Vandenberghe, D.A.G., Vasiliniuc, S., Panaoitu, C.E., Panaiotu, C.G., Dimofte, D., Cosma, C., 2011. Optical dating of Romanian loess: a comparison between silt-sized and sand-sized quartz. Quaternary International 240, 6270.Google Scholar
Tissoux, H., Valladas, H., Voinchet, P., Reyss, J.L., Mercier, N., Falgueres, C., Bahain, J.J., Zoeller, L., Antoine, P., 2010. OSL and ESR studies of Aeolian quartz from the Upper Pleistocene loess sequence of Nussloch (Germany). Quaternary Geochronology 5, 131136.Google Scholar
Trask, P.D., 1932. Origin and Environment of Source Sediments of Petroleum. Gulf, Houston, TX.Google Scholar
Tripaldi, A., Zárate, M., 2017. Geoformas eólicas de la cuenca del río Salado-Chadileuvú, provincia de la Pampa Argentina. Actas XX Congreso Geológico Argentino, San Miguel de Tucumán, pp. 183–185.Google Scholar
Tsatskin, A., Heller, F., Hailwood, E.A., Gendler, T.S., Hus, J., Montgomery, P., Sartori, M., Virina, E.I., 1998. Pedosedimentary division, rock magnetism and chronology of the loess/palaeosol sequence at Rozany (Ukraine). Palaeogeography, Palaeoclimatology, Palaeoecology 143, 111133.Google Scholar
Tsoar, H., Pye, K., 1987. Dust transport and the question of desert loess formation. Sedimentology 34, 139153.Google Scholar
Tuthorn, M., Zech, R., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H., Eglinton, T., Rozanski, K., Zech, M., 2015. Coupling δ2H and δ18O biomarker results yields information on relative humidity and isotopic composition of precipitation. Biogeosciences 12, 39133924.Google Scholar
Tuthorn, M., Zech, M., Ruppenthal, M., Oelmann, Y., Kahmen, A., del Valle, H.F., Wilcke, W., Glaser, B., 2014. Oxygen isotope ratios (18O/16O) of hemicellulose-derived sugar biomarkers in plants, soils and sediments as paleoclimate proxy II: insight from a climate transect study. Geochimica et Cosmochimica Acta 126, 624634.Google Scholar
Újvári, G., Klötzli, U., 2015. U-Pb ages and Hf composition of zircons in Austrian last glacial loess: constraints on heavy mineral sources and sediment transport pathways. International Journal of Earth Sciences 104, 13651385.Google Scholar
Újvári, G., Klötzli, U., Kiraly, F., Ntaflos, T., 2013. Towards identifying the origin of metamorphic components in Austrian loess: insights from detrital rutile chemistry, thermometry and U-Pb geochronology. Quaternary Science Reviews 75, 132142.Google Scholar
Ujvari, G., Kovacs, J., Varga, G., Raucsik, B., Markovic, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits a review. Quaternary Science Reviews 29, 31573166.Google Scholar
Újvári, G., Varga, A., Balogh-Brunstad, Z., 2008. Origin, weathering and geochemical composition of loess in southwestern Hungary. Quaternary Research 69, 421437.Google Scholar
Újvári, G., Varga, A., Ramos, F.C., Kovács, J., Németh, T., Stevens, T., 2012. Evaluating the use of clay mineralogy, Sr–Nd isotopes and zircon U–Pb ages in tracking dust provenance: an example from loess of the Carpathian Basin. Chemical Geology 304, 8396.Google Scholar
Vandenberghe, D.A.G., Derese, C., Kasse, C., Van den haute, P., 2013. Late Weichselian (fluvio-) aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96113.Google Scholar
Vandenberghe, J., 1985. Palaeoenvironment and stratigraphy during the last glacial in the Belgian-Dutch border region. Quaternary Research 24, 2338.Google Scholar
Vandenberghe, J., 1991. Changing conditions of aeolian sand deposition during the last deglaciation period. Zeitschrift für Geomorphologie, Supplementband 90, 193207.Google Scholar
Vandenberghe, J., 2003. Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Reviews 22, 20532060.Google Scholar
Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth Science Reviews 121, 1830.Google Scholar
Vandenberghe, J., An, Z.S., Nugteren, G., Lu, H.Y., Van Huissteden, K., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25, 3538.Google Scholar
Vandenberghe, J., French, H.M., Gorbunov, A., Marchenko, S., Velichko, A.A., Jin, H., Cui, Z., Zhang, T., Wan, X., 2014a. The Last Permafrost Maximum (LPM) map of the Northern Hemisphere: permafrost extent and mean annual air temperatures, 25–17 ka BP. Boreas 43, 652666.Google Scholar
Vandenberghe, J., Kasse, C., 2008. Les formations sableuses en milieux périglaciaires: sables de couverture et sables dunaires. In: Dewolf, Y., Bourrié, G. (Eds.), Les formations superficielles. Ellipses, Paris, pp. 317321.Google Scholar
Vandenberghe, J., Krook, L., 1981. Stratigraphy and genesis of Pleistocene deposits at Alphen (southern Netherlands). Geologie en Mijnbouw 60, 417426.Google Scholar
Vandenberghe, J., Krook, L., 1985. La stratigraphie et la genèse de dépôts Pleistocènes à Goirle (Pays-Bas). Bulletin Association Française d’ études Quaternaires 1985/4, 239247.Google Scholar
Vandenberghe, J., Markovic, S., Jovanovic, M., Hambach, U., 2014b. Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia). Quaternary International 334–335, 8693.Google Scholar
Vandenberghe, J., Renssen, H., Roche, D.M., Goosse, H., Velichko, A.A., Gorbunov, A., Levavasseur, G., 2012. Eurasian permafrost instability constrained by reduced sea-ice cover. Quaternary Science Reviews 34, 1623.Google Scholar
Vandenberghe, J., Renssen, H., van Huissteden, K., Nugteren, G., Konert, M., Lu, H., Dodonov, A., Buylaert, J.-P., 2006. Penetration of Atlantic westerly winds into central and East Asia. Quaternary Science Reviews 25, 23802389.Google Scholar
Vandenberghe, J., Sun, Y., Wang, X., Abels, H.A., Liu, X., 2018. Grain-size characterization of reworked fine-grained aeolian deposits. Earth-Science Reviews 177, 4352.Google Scholar
Vandenberghe, J., Van Huissteden, J., 1988. Fluvio-aeolian interaction in a region of continuous permafrost. Proceedings 5th International. Permafrost Conference, Trondheim, Norway, pp. 876–881.Google Scholar
Van der Hammen, T., Maarleveld, G.C., Vogel, J., Zagwijn, W.H., 1967. Stratigraphy, climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geologie en Mijnbouw 46, 7995.Google Scholar
Van Huissteden, J., 1990. Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, eastern Netherlands. Mededelingen Rijks Geologiche Dienst 44, 1138.Google Scholar
Van Huissteden, J., Vandenberghe, J., Van der Hammen, T., Laan, W., 2000. Fluvial and eolian interaction under permafrost conditions: Weichselian Late Pleniglacial, Twente, eastern Netherlands. Catena 40, 307321.Google Scholar
Varga, G., 2011. Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the World and in Hungary. Quaternary International 234, 98108.Google Scholar
Velichko, A.A., 1990. Loess–paleosol formation on the Russian Plain. Quaternary International 7/8, 103114.Google Scholar
Velichko, A.A., Catto, N.R., Kononov, M.Y., Morozova, T.D., Novenko, E.Y., Panin, P.G., Ryskov, G.Y., et al., 2009. Progressively cooler, drier interglacials in southern Russia through the Quaternary: evidence from the Sea of Azov region. Quaternary International 198, 204219.Google Scholar
Veres, D., Lane, C.S., Timar-Gabor, A., Hambach, U., Constantin, D., Szakács, A., Fülling, A., Onac, B.P., 2013. The Campanian Ignimbrite/Y5 tephra layer – a regional stratigraphic marker for Isotope Stage 3 deposits in the Lower Danube region, Romania. Quaternary International 293, 2233.Google Scholar
Vermeesch, P., 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 441451.Google Scholar
Vermeesch, P., 2012. On the visualisation of detrital age distributions. Chemical Geology 312–313, 190194.Google Scholar
Vermeesch, P., 2013. Multi-sample comparison of detrital age distributions. Chemical Geology 341, 140146.Google Scholar
Vermeesch, P., Garzanti, E., 2015. Making geological sense of ‘Big Data’ in sedimentary provenance analysis. Chemical Geology 409, 2027.Google Scholar
Vlaminck, S., Kehl, M., Lauer, T., Shahriari, A., Sharifi, J., Eckmeier, E., Lehndorff, E., Khormali, F., Frechen, M., 2016. Loess-soil sequence at Toshan (northern Iran): insights into late Pleistocene climate change. Quaternary International 399, 122135.Google Scholar
Vriend, M., Prins, M.A., Buylaert, J.P., Vandenberghe, J., Lu, H., 2011. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial–interglacial cycle. Quaternary International 240, 167180.Google Scholar
Wacha, L., Rolf, C., Hambach, U., Frechen, M., Galović, L., Duchoslav, M., 2017. The Last Glacial aeolian record of the Island of Susak (Croatia) as seen from a high-resolution grain–size and rock magnetic analysis. Quaternary International (in press). https://doi.org/10.1016/j.quaint.2017.08.016.Google Scholar
Wang, X., Wei, H., Taheri, M., Khormali, F., Danukalova, G., Chen, F., 2016. Early Pleistocene climate in western arid central Asia inferred from loess-palaeosol sequences. Scientific Reports 6, 20560. http://dx.doi.org/10.1038/srep20560.Google Scholar
Wang, X.L., Lu, Y.C., Wintle, A.G., 2006. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology 1, 89100.Google Scholar
Wang, Z., Zhao, H., Dong, G., Zhou, A., Liu, J., Zhang, D., 2014. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau. Frontiers of Earth Science 8, 540546.Google Scholar
Waroszewski, J., Sprafke, T., Kabala, C., Musztyfaga, Elżbieta, Labaz, Beata, Woźniczka, P., 2017. Aeolian silt contribution to soils on mountain slopes (Mt. Ślęża, southwest Poland). Quaternary Research., 116. doi: 10.1017/qua.2017.76. Google Scholar
Watson, W., 1966. Early Civilization in China. Thames and Hudson, London.Google Scholar
Westgate, J.A., Stemper, B.A., Péwé, T.L., 1990. A 3 m.y. record of Pliocene-Pleistocene loess in interior Alaska. Geology 18, 858861.Google Scholar
Wiesenberg, G.L.B., Gocke, M., 2013. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol sequence—comment to the paper published by Zech et al., Quaternary Research 78 (2012), 226–235. Quaternary Research 79, 304305.Google Scholar
Wilding, L.P., Odell, R.T., Fehrenbacher, J.B., Beavers, A.H., 1963. Source and distribution of sodium in Solonetzic soils in Illinois. Soil Science Society of America Proceedings 27, 432438.Google Scholar
Williams, J.R., 1962. Geologic Reconnaissance of the Yukon Flats District, Alaska. U.S. Geological Survey Bulletin 1111-H. U.S. Government Printing Office, Washington, DC.Google Scholar
Willmes, C., 2015. LGM Sea Level Change (HiRes). CRC 806 Database. Collaborative Research Centre 806, Department of Geography. University of Cologne, Cologne, Germany.Google Scholar
Wintle, A.G., Adamiec, G., 2017. Optically stimulated luminescence signals from quartz: a review. Radiation Measurements 98, 1033.Google Scholar
Wright, J.S., 2001. “Desert” loess versus “glacial” loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits. Geomorphology 36, 231256.Google Scholar
Wu, B., Wu, N.Q., 2011. Terrestrial mollusk records from Xifeng and Luochuan L9 loess strata and their implications for paleoclimatic evolution in the Chinese Loess Plateau during Marine Oxygen Isotope Stages 24-22. Climate of the Past 7, 349359.Google Scholar
Wünnemann, B., Mischke, S., Chen, F.H., 2006. A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology 234, 223238.Google Scholar
Xiao, G., Zong, K., Li, G., Hu, Z., Dupont-Nivet, G., Peng, S., Zhang, K., 2012. Spacial and glacial-interglacial variations in provenance of the Chinese Loess Plateau. Geophysical Research Letters 39, L20715. http://dx.doi.org/10.1029/2012GL053304.Google Scholar
Yaalon, D.H., 1969. Origin of desert loess. In: Ters, M. (Ed.), Etudes sur le Quaternaire dans le Monde, Vol. 2. Association Francaise pour l’Etude du Quaternaire, Paris, France, p. 755.Google Scholar
Yaalon, D.H., Dan, J., 1974. Accumulation and distribution of loess-derived deposits in the semi-desert and desert fringe areas of Israel. Zeitschrift für Geomorphologie, Supplementband 20, 91105.Google Scholar
Yaalon, D.H., Ganor, E., 1973. The influence of dust on soils during the Quaternary. Soil Science 116, 146155.Google Scholar
Yaalon, D.H., Ganor, E., 1979. East Mediterranean trajectories of dust-carrying storms from the Sahara and Sinai. In: Morales, C. (Ed.), Saharan Dust. John Wiley and Sons, Chichester, UK, pp. 187193.Google Scholar
Yanes, Y., 2015. Stable isotope ecology of land snails from a high-latitude site near Fairbanks, interior Alaska, USA. Quaternary Research 83, 588595.Google Scholar
Yanes, Y., Gutierrez-Zugasti, I., Delgado, A., 2012. Late-glacial to Holocene transition in northern Spain deduced from land-snail shelly accumulations. Quaternary Research 78, 373385.Google Scholar
Yang, B., Wang, J., Bräuning, A., Dong, Z., Esper, J., 2009. Late Holocene climatic and environmental changes in arid central Asia. Quaternary International 194, 6878.Google Scholar
Yang, S., Ding, Z., 2006. Winter–spring precipitation as the principal control on predominance of C3 plants in central Asia over the past 1.77 Myr: evidence from δ13C of loess organic matter in Tajikistan. Palaeogeography, Palaeoclimatology, Palaeoecology 235, 330339.Google Scholar
Yang, S., Ding, Z., 2008. Advance-retreat history of the East-Asian summer monsoon rainfall belt over northern China during the last two glacial-interglacial cycles. Earth and Planetary Science Letters 274, 499510.Google Scholar
Yang, S., Ding, Z., 2010. Drastic climatic shift at ~2.8 Ma as recorded in eolian deposits of China and its implications for redefining the Pliocene-Pleistocene boundary. Quaternary International 219, 3744.Google Scholar
Yang, S., Ding, Z., 2014. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochemistry, Geophysics, Geosystems 15, 798814.Google Scholar
Yang, S., Ding, F., Ding, Z., 2006. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan. Geochimica et Cosmochimica Acta 70, 16951709.Google Scholar
Yang, S., Ding, Z., Li, Y., Wang, X., Jiang, W., Huang, X., 2015. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene. Proceedings of the National Academy of Sciences of the United States of America 112, 1317813183.Google Scholar
Yang, S., Ding, Z., Wang, X., Tang, Z., Gu, Z., 2012. Negative δ18O–δ13C relationship of pedogenic carbonate from northern China indicates a strong response of C3/C4 biomass to the seasonality of Asian monsoon precipitation. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318, 3240.Google Scholar
Yang, Y., Mason, J.A., Zhang, H., Lu, H., Ji, J., Chen, J., Liu, L., 2017. Provenance of loess in the central Great Plains, U.S.A., based on Nd-Sr isotopic composition, and paleoenvironmental implications. Quaternary Science Reviews 173, 114123.Google Scholar
Yapp, C.J., 1979. Oxygen and carbon isotope measurements of land snail shell carbonate. Geochimica et Cosmochimica Acta 43, 629635.Google Scholar
Yin, J., Su, Y., Fang, X., 2016. Climate change and social vicissitudes in China over the past two millennia. Quaternary Research 86, 133143.Google Scholar
Yong, M., Sun, Y., 1994. The western regions under the Hsiung-Nu and the Han. In: Harmatta, J., Puri, B.N., Etemadi, G.F. (Eds.), History of Civilizations of Central Asia. Vol. 2, The Development of Sedentary and Nomadic Civilizations: 700 B.C. to A.D. 250. UNESCO, Paris, pp. 219238.Google Scholar
Youn, J.H., Seong, Y.B., Choi, J.H., Abdrakhmatov, K., Ormukov, C., 2014. Loess deposits in the northern Kyrgyz Tien Shan: implications for the paleoclimate reconstruction during the Late Quaternary. Catena 117, 8193.Google Scholar
Zagwijn, W.H., Paepe, R., 1968. Die Stratigraphie der weichselzeitlichen Ablagerungen der Niederlande und Belgiens. Eiszeitalter und Gegenwart 19, 129146.Google Scholar
Zárate, M., 2003. Loess of southern South America. Quaternary Science Reviews 22, 19872006.Google Scholar
Zárate, M., Blasi, A., 1993. Late Pleistocene–Holocene eolian deposits of the southern Buenos Aires Province, Argentina: a preliminary model. Quaternary International 17, 1520.Google Scholar
Zárate, M., Tripaldi, A., 2012. The aeolian system of central Argentina. Aeolian Research 3, 401417.Google Scholar
Zech, M., Buggle, B., Leiber, K., Markovic, S., Glaser, B., Hambach, U., Huwe, B., et al., 2009. Reconstructing Quaternary vegetation history in the Carpathian Basin, SE Europe, using n-alkane biomarkers as molecular fossils: problems and possible solutions, potential and limitations. E&G – Quaternary Science Journal 85, 150157.Google Scholar
Zech, M., Glaser, B., 2009. Compound-specific δ18O analyses of neutral sugars in soils using GC-Py-IRMS: problems, possible solutions and a first application. Rapid Communications in Mass Spectrometry 23, 35223532.Google Scholar
Zech, M., Krause, T., Meszner, S., Faust, D., 2013a. Incorrect when uncorrected: reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences – a case study from the Saxonian loess region, Germany. Quaternary International 296, 108116.Google Scholar
Zech, M., Kreutzer, S., Zech, R., Goslar, T., Meszner, S., McIntyre, C., Häggi, C., Eglinton, T., Faust, D., Fuchs, M., 2017. Comparative 14C and OSL dating of loess-paleosol sequences to evaluate post-depositional contamination of n-alkane biomarkers. Quaternary Research 87, 180189.Google Scholar
Zech, M., Rass, S., Buggle, B., Löscher, M., Zöller, L., 2012a. Reconstruction of the late Quaternary paleoenvironment of the Nussloch loess paleosol sequence, Germany, using n-alkane biomarkers. Quaternary Research 78, 326335.Google Scholar
Zech, M., Rass, S., Buggle, B., Löscher, M., Zöller, L., 2013b. Reconstruction of the late Quaternary paleoenvironments of the Nussloch loess paleosol – response to the comments by G. Wiesenberg and M. Gocke. Quaternary Research 79, 306307.Google Scholar
Zech, M., Tuthorn, M., Detsch, F., Rozanski, K., Zech, R., Zöller, L., Zech, W., Glaser, B., 2013c. A 220 ka terrestrial δ18O and deuterium excess biomarker record from an eolian permafrost paleosol sequence, NE-Siberia. Chemical Geology 360–361, 220230.Google Scholar
Zech, M., Tuthorn, M., Zech, R., Schlütz, F., Zech, W., Glaser, B., 2014. A 16-ka δ18O record of lacustrine sugar biomarkers from the High Himalaya reflects Indian Summer Monsoon variability. Journal of Paleolimnology 51, 241251.Google Scholar
Zech, M., Zech, R., Buggle, B., Zöller, L., 2011. Novel methodological approaches in loess research – interrogating biomarkers and compound-specific stable isotopes. E&G – Quaternary Science Journal 60, 170187.Google Scholar
Zech, M., Zech, R., Glaser, B., 2007. A 240,000-year stable carbon and nitrogen isotope record from a loess-like palaeosol sequence in the Tumara Valley, northeast Siberia. Chemical Geology 242, 307318.Google Scholar
Zech, M., Zech, R., Rozanski, K., Gleixner, G., Zech, W., 2015. Do n-alkane biomarkers in soils/sediments reflect the δ2H isotopic composition of precipitation? A case study from Mt. Kilimanjaro and implications for paleoaltimetry and paleoclimate research. Isotopes in Environmental and Health Studies 51, 508524.Google Scholar
Zech, R., Gao, L., Tarozo, R., Huang, Y., 2012b. Branched glycerol dialkyl glycerol tetraethers in Pleistocene loess-paleosol sequences: three case studies. Organic Geochemistry 53, 3844.Google Scholar
Zech, R., Zech, M., Marković, S., Hambach, U., Huang, Y., 2013d. Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, northern Serbia. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 165175.Google Scholar
Zeeberg, J.J., 1998. The European sand belt in eastern Europe – a comparison of Late Glacial dune orientation with GCM simulation results. Boreas 27, 127139.Google Scholar
Zeeden, C., Hambach, U., Händel, M., 2015. Loess magnetic fabric of the Krems-Wachtberg archaeological site. Quaternary International 372, 188194.Google Scholar
Zeeden, C., Hambach, U., Veres, D., Fitzsimmons, K., Obreht, I., Bösken, J., Lehmkuhl, F., 2016a. Millennial scale climate oscillations recorded in the Lower Danube loess over the last glacial period. Palaeogeography, Palaeoclimatology, Palaeoecology (in press). https://doi.org/10.1016/j.palaeo.2016.12.029.Google Scholar
Zeeden, C., Kels, H., Hambach, U., Schulte, P., Protze, J., Eckmeier, E., Marković, S.B., Klasen, N., Lehmkuhl, F., 2016b. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania) – implications for dust accumulation in south-eastern Europe. Quaternary Science Reviews 154, 130154.Google Scholar
Zhang, H., Lu, H., Xu, X., Liu, X., Yang, T., Stevens, T., Bird, A., et al., 2016. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns. Journal of Geophysical Research: Earth Surface 121, 20852099.Google Scholar
Zhang, N., Yamada, K., Suzuki, N., Yoshida, N., 2014. Factors controlling shell carbon isotopic composition of land snail Acusta despecta sieboldiana estimated from laboratory culturing experiment. Biogeosciences 11, 53355348.Google Scholar
Zhang, X.Y., Arimoto, R., An, Z., 1999. Glacial and interglacial patterns for Asian dust transport. Quaternary Science Reviews 18, 811819.Google Scholar
Zhang, Z., Zhao, M., Eglinton, G., Lu, H., Huang, C., 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr. Quaternary Science Reviews 20, 575594.Google Scholar
Zhao, H., Qiang, X., Sun, Y., 2014. Apparent timing and duration of the Matuyama-Brunhes geomagnetic reversal in Chinese loess. Geochemistry, Geophysics, Geosystems 15, 44684480.Google Scholar
Zheng, H., Chen, H., Cao, J., 2002. Palaeoenvironmental implication of the Plio-Pleistocene loess deposits in southern Tarim Basin. Chinese Science Bulletin 47, 700704.Google Scholar
Zheng, H., Powell, C.M., Butcher, K., Cao, J., 2003. Late Neogene loess deposition in southern Tarim Basin: tectonic and palaeoenvironmental implications. Tectonophysics 375, 4959.Google Scholar
Zhou, L.P., Shackleton, N.J., 1999. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences. Earth and Planetary Science Letters 168, 117130.Google Scholar
Zhu, R., Liu, Q., Jackson, M.J., 2004. Paleoenvironmental significance of the magnetic fabrics in Chinese loess-paleosols since the last interglacial (<130 ka). Earth and Planetary Science Letters 221, 5569.Google Scholar
Zöller, L., Semmel, A., 2001. 175 Years of loess research in Germany – long records and “unconformities. Earth-Science Reviews 54, 1928.Google Scholar
Zykin, V.S., Zykina, V.S., 2015. The Middle and Late Pleistocene loess-soil record in the Iskitim area of Novosibirsk Priobie, south-eastern West Siberia. Quaternary International 365, 1525.Google Scholar
Zykina, V., Zykin, V., 2012. Loess-Soil Sequence and Environment and Climate Evolution of West Siberia in Pleistocene. [In Russian.] Academic Publishing House “Geo,” Novosibirsk, Russia.Google Scholar