Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T04:59:17.888Z Has data issue: false hasContentIssue false

Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo

Published online by Cambridge University Press:  20 January 2017

Wannes Hubau*
Affiliation:
Ghent University, Department of Forest and Water Management, Laboratory for Wood Technology, Coupure Links 653, B-9000 Gent, Belgium Royal Museum for Central Africa, Laboratory for Wood Biology, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Jan Van den Bulcke
Affiliation:
Ghent University, Department of Forest and Water Management, Laboratory for Wood Technology, Coupure Links 653, B-9000 Gent, Belgium
Peter Kitin
Affiliation:
Royal Museum for Central Africa, Laboratory for Wood Biology, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Florias Mees
Affiliation:
Royal Museum for Central Africa, Department of Geology and Mineralogy, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Geert Baert
Affiliation:
University College Ghent, Department of Plant Production, Schoonmeersstraat 52, B-9000 Gent, Belgium
Dirk Verschuren
Affiliation:
Ghent University, Department of Biology, Limnology Unit, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
Laurent Nsenga
Affiliation:
Ghent University, Department of Forest and Water Management, Laboratory for Wood Technology, Coupure Links 653, B-9000 Gent, Belgium Royal Museum for Central Africa, Laboratory for Wood Biology, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
Joris Van Acker
Affiliation:
Ghent University, Department of Forest and Water Management, Laboratory for Wood Technology, Coupure Links 653, B-9000 Gent, Belgium
Hans Beeckman
Affiliation:
Royal Museum for Central Africa, Laboratory for Wood Biology, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
*
*Corresponding author at: Ghent University, Department of Forest and Water Management, Laboratory for Wood Technology, Coupure Links 653, B-9000 Gent, Belgium. Tel.: + 32 9 264 61 23; fax: + 32 9 264 90 92. E-mail addresses:wannes.hubau@ugent.be, w.hubau@leeds.ac.uk (W. Hubau), jan.vandenbulcke@ugent.be (J. Van den Bulcke), kitin@wisc.edu (P. Kitin), florias.mees@africamuseum.be (F. Mees), geert.baert@hogent.be (G. Baert), Dirk.verschuren@ugent.be (D. Verschuren), lnsenga@yahoo.fr (L. Nsenga), joris.vanacker@ugent.be (J. Van Acker), hans.beeckman@africamuseum.be (H. Beeckman).

Abstract

Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the "Medieval Climate Anomaly", mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

African Plants Database, (2011). African Plants Database Version 3.3.3, Conservatoire et Jardin botaniques de la Ville de Genève and South African National Biodiversity Institute, Pretoria. Published on the internet [accessed 10th January 2011–26th July 2011], fromhttp://www.ville-ge.ch/musinfo/bd/cjb/africa/ .Google Scholar
Akendengue, B., Lemamy, G.J., Bourobou Bourobou, H., Laurens, A., (2005). Bioactive natural compounds from medico-magic plants of bantu area. Studies in Natural Products Chemistry 32, 803820.CrossRefGoogle Scholar
Alley, R.B., Ágústsdóttir, A.M., (2005). The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 11231149.CrossRefGoogle Scholar
Baert, G., (1995). Properties and Chemical Management Aspects of Soils on Different Parent Rocks in the Lower Zaire. PhD Dissertation Ghent University, (318 pp.).Google Scholar
Banzouzi, J.T., Makambila Koubemba, M.C., Prost, A., Mbatchi, B., Abena, A.A., (2008). Survey of analgesic plants used by tradipractitioners in Congo Brazzaville. International Journal of Botany 4, 176185.Google Scholar
Bird, M.I., Cali, J.A., (1998). A million-, year record of fire in sub-Saharan Africa. Nature 394, 767769.Google Scholar
Brncic, T.M., Willis, K.J., Harris, D.J., Washington, R., (2007). Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philosophical Transactions of the Royal Society 362, 229242.CrossRefGoogle ScholarPubMed
Broadbent, E.N., Asner, G.P., Keller, M., Knapp, D.E., Oliveira, P.J.C., Silva, J.N., (2008). Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biological Conservation 141, 17451757.CrossRefGoogle Scholar
Bronk Ramsey, C., (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Burkill, H.M. 1st editionThe Useful Plants of West Tropical Africa 6, (1985). Royal Botanic Gardens, Kew.Google Scholar
Cahen, D., Moeyersons, J., (1977). Subsurface movements of stone artefacts and their implications for the prehistory of Central Africa. Nature 266, 812815.CrossRefGoogle Scholar
Carcaillet, C., Thinon, M., (1996). Pedoanthracological contribution to the study of the evolution of the upper treeline in the Maurienne Valley (North French Alps): methodology and preliminary data. Review of Palaeobotany and Palynology 91, 399416.CrossRefGoogle Scholar
Carcaillet, C., Barakat, H.N., Panaïotis, C., Loisel, R., (1997). Fire and late-Holocene expansion of Quercus ilex and Pinus pinaster on Corsica. Journal of Vegetation Science 8, 8594.Google Scholar
Cochrane, M.A., (2003). Fire science for rainforests. Nature 421, 913919.Google Scholar
Cochrane, M.A., Alencar, A., Schulze, M.D., Souza jr., C.M., Nepstad, D.C., Lefebvre, P., Davidson, E.A., (1999). Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284, 18321834.Google Scholar
Couralet, C., (2010). Community dynamics, phenology and growth of tropical trees in the rain forest reserve of Luki, Democratic Republic of Congo. PhD Thesis Faculty of Bioscience Engineering. Ghent University, (173 pp.).Google Scholar
Daïnou, K., Bauduin, A., Bourland, N., Gillet, J.-F., Fétéké, F., Doucet, J.-L., (2011). Soil seed bank characteristics in Cameroonian rainforests and implications for post-logging forest recovery. Ecological Engineering 37, 14991506.Google Scholar
Daniau, A.-L., Harrison, S.P., Bartlein, P.J., (2010). Fire regimes during the Last Glacial. Quaternary Science Reviews 29, 29182930.Google Scholar
Dechamps, R., Lanfranchi, R., Le Cocq, A., Schwartz, D., (1988). Reconstruction d'environnements quaternaires par l'étude de macrorestes vegetaux (Pays Bateke, R.P. du Congo). Palaeogeography, Palaeoclimatology, Palaeoecology 66, 3344.CrossRefGoogle Scholar
Di Pasquale, G., Marziano, M., Impagliazzo, S., Lubritto, C., De Natale, A., Bader, M.Y., (2008). The Holocene tree line in the northern Andes (Ecuador): first evidence from soil charcoal. Palaeogeography, Palaeoclimatology, Palaeoecology 259, 1734.Google Scholar
Donis, C., (1948). Essai d'économie forestière au Mayumbe. Publications de l'Institut National pour l'Etude Agronomique du Congo Belge (INEAC), Bruxelles, Belgique. Série scientifique 37, (92 pp.).Google Scholar
Dupont, L.M., Jahns, S., Marret, F., Ning, S., (2000). Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 95122.Google Scholar
Elenga, H., Schwartz, D., Vincens, A., Bertaux, J., de Namur, C., Martin, L., Wirrmann, D., Servant, M., (1996). Diagramme pollinique holocène du lac Kitina (Congo): mise en évidence de changements paléobotaniques et paléoclimatiques dans le massif forestier du Mayombe. Rendered Accounts of the Academy of Sciences, Paris, Series II 322, 749755.Google Scholar
Elenga, H., de Namur, C., Vincens, A., Roux, M., Schwartz, D., (2000). Use of plots to define pollen–vegetation relationships in densely forested ecosystems of tropical Africa. Review of Palaeobotany and Palynology 112, 7996.Google Scholar
Elenga, H., Maley, J., Vincens, A., Farrera, I., (2004). Palaeoenvironments, palaeoclimates and landscape development in Atlantic Equatorial Africa: a review of key sites covering the last 25 kyrs. Battarbee, R.W., Gasse, F., Stickley, C.E. Past Climate Variability through Europe and Africa. Kluwer Academic Publishers, The Netherlands.181198.Google Scholar
Emery-Barbier, A., Thiébault, S., (2005). Preliminary conclusions on the Late Glacial vegetation in south-west Anatolia (Turkey): the complementary nature of palynological and anthracological approaches. Journal of Archaeological Science 32, 12321251.CrossRefGoogle Scholar
Hart, T.B., Hart, J.A., Dechamps, R., Fournier, M., Ataholo, M., (1996). Changes in forest composition over the last 4000 years in the Ituri basin, Zaire. van der Maesen, L.J.G., van der Burgt, X.M., van Medenbach de Rooy, J.M. The Biodiversity of African Plants. Kluwer Academic Publishers, The Netherlands.545563.Google Scholar
Hessler, I., Dupont, L., Bonnefille, R., Behling, H., González, C., Helmens, K.F., Hooghiemstra, H., Lebamba, J., Ledru, M.-P., Lézine, A.-M., Maley, J., Marret, F., Vincens, A., (2010). Millennial-scale changes in vegetation records from tropical Africa and South America during the Last Glacial. Quaternary Science Reviews 29, 28822899.CrossRefGoogle Scholar
Hubau, W., Van den Bulcke, J., Mees, F., Van Acker, J., Beeckman, H., (2012). Charcoal identification in species-rich biomes: a protocol for Central Africa optimised for the Mayumbe forest. Review of Palaeobotany and Palynology 171, 164178.Google Scholar
IAWA Committee, (1989). IAWA list of microscopic features for hardwood identification. IAWA Bulletin 10, 219332.Google Scholar
InsideWood, (2011). The InsideWood Working Group (IWG), 2004èonwards. Published on the Internet [accessed 11th July 2011, 14:30 GMT], from http://insidewood.lib.ncsu.edu/search .Google Scholar
Leal, M.E., (2001). Microrefugia, small scale ice age forest remnants. Systematics and Geography of Plants 71, 10731077.CrossRefGoogle Scholar
Leal, M.E., (2004). The African Rain Forest During the Last Glacial Maximum, An Archipelago of Forests in a Sea of Grass. PhD Thesis Wageningen University, Wageningen.(96 pp.).Google Scholar
Lebamba, J., Ngomanda, A., Vincens, A., Jolly, D., Favier, C., Elenga, H., Bentaleb, I., (2009). Central African biomes and forest succession stages derived from modern pollen data and functional plant types. Climate of the Past 5, 403429.Google Scholar
Lebrun, J., Gilbert, G., (1954). Une classification écologique des forêts du Congo. Publications de l'Institut National pour l'Etude Agronomique du Congo Belge (INEAC), Bruxelles, Belgique. Série scientifique 63, (89 pp.).Google Scholar
Maley, J., (1996). Le cadre paléoenvironnemental des refuges forestiers africains: quelques données et hypothèses. van der Maesen, L.J.G., van der Burgt, X.M., van Medenbach de Rooy, J.M. The Biodiversity of African plants. Kluwer Academic Publishers, The Netherlands.519535.Google Scholar
Maley, J., (2001). The impact of arid phases on the African rain forest through geological history. Weber, W., White, L.J.T., Vedder, A., Naughton-Treves, L. African Rain Forest Ecology and Conservation, An Interdisciplinary Perspective. Yale University Press, New Haven.6887.Google Scholar
Maley, J., (2002). A catastrophic destruction of african forests about 2500 years ago still exerts a major influence on present vegetation formations. IDS Bulletin 33, 1330.Google Scholar
Maley, J., (2004). Les variations de la végétation et des paléoenvironnements du domaine forestier africain au cours du Quaternaire récent. Renault-Miskovsky, J., Semah, A.M. Guide de la préhistoire mondiale. Artcom'/Errance, Paris.143178.Google Scholar
Maley, J., Brenac, P., (1998). Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P.. Review of Palaeobotany and Palynology 99, 157187.Google Scholar
Maley, J., Chepstow-Lusty, A., (2001). Elaeis guineensis Jacq. (oil palm) fluctuations in central Africa during the late Holocene: climate or human driving forces for this pioneering species?. Vegetation History and Archaeobotany 10, 117120.Google Scholar
Maley, J., Giresse, P., Doumenge, C., Favier, C., (2012). Comment on “Intensifying weathering and land use in Iron Age Central Africa”. Science 337, 1040-d.Google Scholar
Mayaux, P., Janodet, E., Blair-Myers, C., Legeay-Janvier, P., (1997). Vegetation map of central Africa at 1:5 000 000. Trees series D: Thematic outputs 1, (8 pp.).Google Scholar
McBrearty, S., (1990). Consider the humble termite: termites as agents of post-depositional disturbance at African archaeological sites. Journal of Archaeological Science 17, 111143.CrossRefGoogle Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., Reimer, P.J., (2004). SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46, 10871092.Google Scholar
Murphy, C.P., (1986). Thin Section Preparation of Soils and Sediments. AB Academic Publishers, Berkhamsted, U.K..(149 pp.).Google Scholar
Mwavu, E.N., Witkowski, E.T.F., (2008). Sprouting of woody species following cutting and tree-fall in a lowland semi-deciduous tropical rainforest, North-Western Uganda. Forest Ecology and Management 255, 982992.Google Scholar
Neumann, K., Bostoen, K., Höhn, A., Kahlheber, S., Ngomanda, A., Tchiengué, B., (2012a). First farmers in the Central African rainforest: a view from southern Cameroon. Quaternary International 249, 5362.Google Scholar
Neumann, K., Eggert, M.K.H., Oslisly, R., Clist, B., Denham, T., de Maret, P., Ozainne, S., Hildebrand, E., Bostoen, K., Salzmann, U., Scwartz, D., Eichhorn, B., Tchiengué, B., Höhn, A., (2012b). Comment on “Intensifying weathering and land use in Iron Age Central Africa”. Science 337, 1040-c.CrossRefGoogle Scholar
Ngomanda, A., Jolly, D., Bentaleb, I., Chepstow-Lusty, A., Makaya, M., Maley, J., Fontugne, M., Oslisly, R., Rabenkogo, N., (2007). Lowland rainforest response to hydrological changes during the last 1500 years in Gabon, Western Equatorial Africa. Quaternary Research 67, 411425.Google Scholar
Ngomanda, A., Chepstow-Lusty, A., Makaya, M., Favier, C., Schevin, P., Maley, J., Fontugne, M., Oslisly, R., Jolly, D., (2009a). Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?. Climate of the Past 5, 647659.Google Scholar
Ngomanda, A., Neumann, K., Schweizer, A., Maley, J., (2009b). Seasonality change and the third millennium BP rainforest crisis in southern Cameroon (Central Africa). Quaternary Research 71, 307318.Google Scholar
Oslisly, R., (2001). The history of human settlement in the Middle Ogooué Valley (Gabon): implications for the environment. Weber, W., White, L.J.T., Vedder, A., Naughton-Treves, L. African Rain Forest Ecology and Conservation, An Interdisciplinary Perspective. Yale University Press, New Haven.101118.Google Scholar
Protabase, (2012). Plant Resources of Tropical Africa. Published on the Internet [accessed February–March 2012], from http://database.prota.org/search.htm .Google Scholar
Reynaud-Farrera, I., Maley, J., Wirrmann, D., (1996). Végétation et climat dans les forêts du sud-ouest Cameroun depuis 4770 ans BP. Analyse pollinique des sédiments du lac Ossa. Rendered Accounts of the Academy of Sciences, Series II 232, 403410.Google Scholar
Russell, J.M., Johnson, T.C., (2005). A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quaternary Science Reviews 24, 13751389.Google Scholar
Russell, J.M., Johnson, T.C., (2007). Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño–Southern Oscillation variability. Geology 35, 2124.Google Scholar
Russell, J.M., Johnson, T.C., Kelts, K.R., Laerdal, T., Talbot, M.R., (2003). An 11 000-Edward, Uganda–Congo. Palaeogeography, Palaeoclimatology, Palaeoecology 193, year lithostratigraphic and paleohydrologic record from Equatorial Africa: Lake 2549.Google Scholar
Salzmann, U., Hoelzmann, P., (2005). The Holocene history of the Dahomey Gap: a climatic induced fragmentation of the West African Rainforest. The Holocene 15, 190199.Google Scholar
Schefuß, E., Schouten, S., Schneider, R.R., (2005). Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 10031006.Google Scholar
Schnitzer, F.A., Bongers, F., (2002). The ecology of lianas and their role in forests. Trends in Ecology & Evolution 17, 223230.Google Scholar
Schwartz, D., de Foresta, H., Dechamps, R., Lanfranchi, R., (1990). Découverte d'un premier site de l'âge du fer ancien (2110 B.P.) dans le Mayombe congolais. Implications paléobotaniques et pédologiques. Rendered Accounts of the Academy of Sciences, Paris, Series II 310, 12931298.Google Scholar
Scott, A.C., (2000). The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology 164, 281329.CrossRefGoogle Scholar
Sosef, M.S.M., (1996). Begonias and African rain forest refuges: general aspects and recent progress. van der Maesen, L.J.G., van der Burgt, X.M., van Medenbach de Rooy, J.M. The Biodiversity of African plants. Kluwer Academic Publishers, The Netherlands.602611.Google Scholar
Stager, C., Cocquyt, J.C., Bonnefille, R., Weyhenmeyer, C., Bowerman, N., (2009). A late Holocene palaeoclimatic history of Lake Tanganyika, East Africa. Quaternary Research 72, 4756.Google Scholar
Stoops, G., (2003). Guidelines for Analysis and Description of Soil and Regolith Thin Sections. Soil Science Society of America, Madison, WI.(184 pp.).Google Scholar
Stoops, G., Marcelino, V., Mees, F., (2010). Interpretation of Micromorphological Features of Soils and Regoliths. Elsevier, (752 pp.).Google Scholar
Tchouto, M.G.P., de Wilde, J.J.F.E., de Boer, W.F., van der Maesen, L.J.G., Cleef, A.M., (2009). Bio-indicator species and Central African rain forest refuges in the Campo-Ma'an area, Cameroon. Systematics and Biodiversity 7, 2131.Google Scholar
Théry-Parisot, I., Chabal, L., Chrzavzez, J., (2010). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 142153.CrossRefGoogle Scholar
Tierney, J.E., Smerdon, J.E., Anchukaitis, K.J., Seager, D., (2013). Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389392.Google Scholar
van Gemerden, B.S., Olff, H., Parren, M.P.E., Bongers, F., (2003). The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. Journal of Biogeography 30, 13811390.Google Scholar
Van Ranst, E., Baert, G., Ngongo, M., Mafuka, P., (2010). Carte pédologique de la province du Bas-Congo et ville de Kinshasa, échelle 1:500.000. UGent, Hogent, UNILU, UNIKIN. 9789491114625.Google Scholar
Verschuren, D., Charman, D.J., (2008). Latitudinal linkages in late Holocene moisture-balance variation. Battarbee, R.W., Binney, H.A. Natural Climate Variability and Global Warming: A Holocene Perspective. Wiley-Blackwell, United Kingdom.189231.Google Scholar
Verschuren, D., Laird, K.R., Cumming, B.F., (2000). Rainfall and drought in equatorial east Africa during the past 1100 years. Nature 403, 410414.Google Scholar
Verschuren, D., Sinninghe Damsté, J.S., Moernaut, J., Kristen, I., Blaauw, M., Fagot, M., Haug, G.H., (2009). CHALLACEA project members, 2009. Half-precessional dynamics of monsoon rainfall near the East African Equator. Nature 462, 637641.Google Scholar
Vincens, A., Schwartz, D., Bertaux, J., Elenga, H., de Namur, C., (1998). Late Holocene climatic changes in Western Equatorial Africa inferred from pollen from Lake Sinnda, Southern Congo. Quaternary Research 50, 3445.Google Scholar
Weldeab, S., Lea, D.W., Schneider, R.R., Andersen, N., (2007). 155,000 years of West African monsoon and ocean thermal evolution. Science 316, 13031307.Google Scholar
Wheeler, E.A., (2011). InsideWood — a web resource for hardwood anatomy. IAWA Bulletin 32, 199211.Google Scholar
Willis, K.J., Birks, H.J.B., (2006). What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 12611265.Google Scholar
Worbes, M., Staschel, R., Roloff, A., Junk, W.J., (2003). Tree ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon. Forest Ecology and Management 173, 105123.Google Scholar
WRB, (2006). World reference base for soil resources 2006. IUSS Working Group. World Soil Resources Reports 103, FAO, Rome.Google Scholar