Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:10:23.805Z Has data issue: false hasContentIssue false

Upper Pleistocene to Holocene peatland evolution in Southern Brazilian highlands as depicted by radar stratigraphy, sedimentology and palynology

Published online by Cambridge University Press:  20 January 2017

Marcelo Accioly Teixeira de Oliveira*
Affiliation:
Departamento de Geociências, Universidade Federal de Santa Catarina (UFSC), Brazil
Jorge Luis Porsani
Affiliation:
Departamento de Geofísica, Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG), Universidade de São Paulo (USP), Brazil
Gisele Leite de Lima
Affiliation:
Universidade Federal da Fronteira Sul (UFFS), Brazil
Vivian Jeske-Pieruschka
Affiliation:
Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Germany
Hermann Behling
Affiliation:
Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Germany
*
*Corresponding author at: P. O. Box: 5175, Trindade, CEP: 88040–970, Florianópolis, SC, Brazil. E-mail addresses:maroliv@cfh.ufsc.br (M.A.T. de Oliveira), porsani@iag.usp.br (J.L. Porsani), giselelima99@gmail.com (G.L. de Lima), vjeske@uni-goettingen.de (V. Jeske-Pieruschka), hermann.behling@bio.uni-goettingen.de (H. Behling).

Abstract

Paleoenvironmental interpretation of proxy data derived from peatlands is largely based upon an evolutionary model for ombrotrophic bogs, in which peat accumulates in still environments. Reports on proxies obtained from minerotrophic fens, where hydrologic inputs are variable, are less common. In this study, a highland peatland in southern Brazil is presented through ground penetrating radar (GPR) and sedimentological, palynological and geochronologic data. The radar stratigraphic interpretation suggests a relatively complex history of erosion and deposition at the site since the beginning of Marine Isotope Stage 3 (MIS 3) interstadial period. In spite of this, radar stratigraphic and palynologic interpretations converge. Electromagnetic reflections tend to group in clusters that show lateral coherence and correlate with different sediment types, while pollen grains abound and are well preserved. As a result, the study of minerotrophic fens provides a source of proxies, suggesting that ombrotrophic bogs are not the only reliable source of data in wetlands for palynological analysis.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharon, P., Chappell, J., (1986). Oxygen isotopes sea level changes and the temperature history of a coral reef environment in New Guinea over the last 105 years. Paleogeography, Palaeoclimatology, Palaeoecology. 56, 337339.CrossRefGoogle Scholar
Baker, P.L., (1991). Response of ground-penetrating radar to bounding surfaces and lithofacies variations in sand barrier sequences. Exploration Geophysics. 22, 1922.CrossRefGoogle Scholar
Baker, G.S., Jol, H.M., (2007). Stratigraphic analyses using GPR. Geological Society of America, Special Paper 43.Google Scholar
Barber, K.E., Chambers, F.M., Maddy, D., (2003). Holocene palaeoclimates from peat stratigraphy: macrofossil Proxy climate records from three oceanic raised bogs in England and Ireland. Quaternary Science Reviews. 22, 521539.CrossRefGoogle Scholar
Bauermann, S.G., Marquestoigo, M., Behling, H., (2002). Aspectos tafonômicos em Palinologia de Quaternário. Pesquisas. Botânica. 52, 223239.Google Scholar
Behling, H., (1993). Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Dissertationes Botanicae, 206. J. Cramer, Berlin, Stuttgart.Google Scholar
Behling, H., (1995). Investigation into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany. 4, 127152.CrossRefGoogle Scholar
Behling, H., (1997a). Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeography, Palaeooclimatology, Palaeoecology. 129, 407422.CrossRefGoogle Scholar
Behling, H., (1997b). Late Quaternary vegetation, climate and fire history of the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South America). Review of Palaeobotany and Palinology. 97, 109121.CrossRefGoogle Scholar
Behling, H., Pillar, V.D., Orlóci, L., Bauermann, S.G., (2004). Late Quaternary Araucaria forest, grassland (Campos) fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology. 203, 277297.CrossRefGoogle Scholar
Bertran, P., Texier, J.-P., (1999). Facies and microfacies of slope deposits. Catena. 35, 99121.CrossRefGoogle Scholar
Blackford, J.J., (2000). Palaeoclimatic records from peat bogs. Tree. 15, 193198.Google ScholarPubMed
Blackford, J.J., Chambers, F.M., (1995). Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability. Earth and Planetary Science Letters. 133, 145150.CrossRefGoogle Scholar
Catuneanu, O., Abreu, V., Bhattacharya, J.P., Blum, M.D., Dalrymple, R.W., Eriksson, P.G., Fielding, C.R., Fisher, W.L., Galloway, W.E., Gibling, M.R., Giles, K.A., Holbrook, J.M., Jordan, R., Kendall, C.G., St, C., Macurda, B., Martinsen, O.J., Miall, A.D., Neal, J.E., Nummedal, D., Pomar, L., Posamentier, H.W., Pratt, B.R., Sarg, J.F., Shanley, K.W., Steel, R.J., Strasser, A., Tucker, M.E., Winker, C., (2009). Towards the standardization of sequence stratigraphy. Earth-Science Reviews. 92, 133.CrossRefGoogle Scholar
Charman, D., (2002). Peatlands and Environmental Change. John Wiley and Sons Ltda, Chichester.Google Scholar
Clymo, R.S., (1984). The limits to peat bog growth. Philosophical Transactions of the Royal Society of London B. 303, 605654.Google Scholar
Comas, X., Slater, L., (2009). Noninvasive field-scale characterization of gaseous-phase methane dynamics in peatlands using the ground-penetrating radar method. Baird, A.J., Beleya, L.R., Comas, X., Reeve, A.S., Slater, L.D., Carbon cycling in northern peatlands, American Geophysical Union, Geophysical Monograph 184, Washington, 159171.Google Scholar
Comas, X., Slater, L., Reeve, A., (2005). Stratigraphic controls on pool formation in a domed bog inferred from ground penetrating radar (GPR). Journal of Hydrology. 315, 4051.CrossRefGoogle Scholar
Cruz, F.W., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M.R., Edwards, L., Karmann, I., Auler, A.S., Nguyen, H., (2009). Orbitally driven east–west antiphasing of South American precipitation. Nature Geoscience. 2, 210214.CrossRefGoogle Scholar
Dietrich, W.E., Dunne, T., (1993). The channel head. Beven, K., Kirkby, M.J., Channel Network Hydrology, John Willey and Sons Ltd, 175219.Google Scholar
Doolittle, J.A., Butnor, J.R., (2009). Soils, peatlands and biomonotoring. Jol, H.M., Ground penetrating radar: theory and applcations, Elsevier, Amsterdam, 179202.Google Scholar
EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária), , ((Empresa Brasileira de Pesquisa Agropecuária), 1979). Manual de métodos de análise do solo. Rio de Janeiro.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4 ed. John Wiley, New York.Google Scholar
Flemming, B.W., (2000). A revised textural classification of gravel-free muddy sediments on the basis ternary diagrams. Continental Shelf Research. 20, 11251137.CrossRefGoogle Scholar
Folk, R.L., (1974). The Petrology of Sedimentary Rocks. Hemphill Publishing Co, Austin.Google Scholar
Franchi, J.G., Sígolo, J.B., Lima, J.R.B., (2003). Turfa utilizada na recuperação ambiental de áreas mineradas: metodologia para avaliação laboratorial. Revista Brasileira de Geociências. 33, 255262.CrossRefGoogle Scholar
Franchi, J.G., Sígolo, J.B., Motta, J.F.M., (2006). Diagnóstico das turfas no Brasil: histórico da utilização, classificação, geologia e dados econômicos. Revista Brasileira de Geociências. 36, 1- Suplemento 179190.CrossRefGoogle Scholar
Grimm, E.C., (1987). CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences. 13, 1335.CrossRefGoogle Scholar
Grimm, E.C., (1991). TILIA-GRAPH 1.25 (computer software). Illinois State, University Research and Collection Center.Google Scholar
Hugenholtz, C.H., Moorman, B.J., Wolfe, S.A., (2007). Ground penetrating radar (GPR) imaging of the internal structure of an active parabolic sand dune. Baker, G.S., Jol, H.M., Stratigraphic analyses using GPR, Geological Society of America, Special Paper. 432, 3545.CrossRefGoogle Scholar
Hughes, P.D.M., (2000). A reappraisal of the mechanisms leading to ombrotrophy in British raised mires. Ecology Letters. 3, 79.CrossRefGoogle Scholar
International Peat Society (IPS), , ((IPS), 2011). Global peat resources. www.peatsociety.org.Google Scholar
Jol, H.M., Smith, D.G., (1991). Ground penetrating radar of northern lacustrine deltas. Canadian Journal of Earth Science. 28, 19391947.CrossRefGoogle Scholar
Jol, H.M., Smith, D.G., (1995). Ground penetrating radar surveys for oilfield pipelines in Canada. Journal of Applied Geophysics. 34, 109123.CrossRefGoogle Scholar
Kettridge, N., Comas, X., Baird, A., Slater, L., Strack, M., Thompson, D., Jol, H., Binley, A., (2008). Ecohydrologically important subsurface structures in peatlands revealed by ground penetrating radar and complex conductivity surveys. Journal of Geophysical Research. 113, G04030 .CrossRefGoogle Scholar
Klein, R.M., (1978). Mapa Fitogeográfico do Estado de Santa Catarina. Itajaí.Google Scholar
Morton, R.A., Bernier, J.C., Buster, N.A., (2009). Sample methods for evaluating accommodation space formation in coastal wetlands. Wetlands. 29, 9971003.CrossRefGoogle Scholar
Neal, A., (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth-Science Reviews. 66, 261330.CrossRefGoogle Scholar
Oliveira, M.A.T., Lima, G.L., (2004). Classificação de sedimentos quaternários em cabeceiras de vale através da aplicação do diagrama de Flemming: município de Campo Alegre, Norte de Santa Catarina. Geociências. 23, 6778.Google Scholar
Oliveira, M.A.T., Behling, H., Pessenda, L.C.R., (2008). Late-Pleistocene and mid-Holocene environmental changes in highland valley head areas of Santa Catarina state, Southern Brazil. Journal of South America Earth Sciences. 26, 5567.CrossRefGoogle Scholar
Roth, L., Lorscheitter, M.L., (1993). Palynology of a bog in Parque Nacional de Aparados da Serra, East Plateau of Rio Grande do Sul. Quaternary of South America and Antarctic Peninsula. 8, 3969.Google Scholar
Shotyk, W., (1992). Organic soils. Martini, I.P., Chessworth, W., Weathering, soils and paleosols, Developments in Earth Surface Processes. 2, Elsevier, Amsterdam, 203224.CrossRefGoogle Scholar
Siqueira, E., (2006). História vegetacional e climática da floresta da Araucária na região de Monte Verde: Análises Palinológicas e Sedimentológicas. M. Sc. Thesis, USP, São Paulo.Google Scholar
Slater, L.D., Reeve, A., (2002). Case history. Investigating peatland stratigraphy and hydrology using integrated electrical geophysics. Geophysics. 67, 365378.CrossRefGoogle Scholar
Theimer, B.D., Nobes, D.C., Warner, B.G., (1994). A study of the geoelectral properties of peatlands and their influence on ground-penetrating radar surveying. Geophysical Prospecting. 42, 172209.CrossRefGoogle Scholar
van Dam, R.L., Schlager, W., (2000). Identifying causes of ground-penetrating radar reflections using time-domain reflectometry and sedimentological analysis. Sedimentology. 47, 435449.CrossRefGoogle Scholar
Warner, B.G., Nobes, D.C., Theimer, B.D., (1990). An application of ground-penetrating radar to peat stratigraphy of Ellice Swamp, Southwest Ontario. Canadian Journal of Earth Sciences. 27, 932938.CrossRefGoogle Scholar
Yu, Z., Vitt, D.H., Campbell, I.D., Apps, M.J., (2003). Understanding Holocene peat accumulation pattern of continental fens in western Canada. Canadian Journal of Botany. 81, 267282.CrossRefGoogle Scholar
Zanini, L.F.P., Branco, P.M., Camozzato, E., Ramgrab, G.E., (1997). Programa de Levantamentos Geológicos Básicos do Brasil — Folhas Florianópolis e Lagoa. Brasília, MME/SMM.Google Scholar
Supplementary material: PDF

de Oliveira et al. Supplementary Material

Supplementary Material

Download de Oliveira et al. Supplementary Material(PDF)
PDF 1.4 MB