Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:47:57.370Z Has data issue: false hasContentIssue false

Preliminary small mammal taphonomy of FLK NW level 20 (Olduvai Gorge, Tanzania)

Published online by Cambridge University Press:  20 January 2017

Saleta Arcos
Affiliation:
Departamento de Paleontología, Facultad de Geología (UCM) e Instituto de Geología Económica (CSIC), C/José Antonio Novais, 2, 28040 Madrid, Spain
Paloma Sevilla
Affiliation:
Departamento de Paleontología, Facultad de Geología (UCM) e Instituto de Geología Económica (CSIC), C/José Antonio Novais, 2, 28040 Madrid, Spain
Yolanda Fernández-Jalvo*
Affiliation:
Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2, 28006 Madrid, Spain
*
*Corresponding author. Fax: + 34 91 564 5078. E-mail address:yfj@mncn.csic.es (Y. Fernández-Jalvo).

Abstract

The Bed-I series of Olduvai Gorge (Tanzania) is a reference site in human evolution, having yielded the holotypes of Paranthropus boisei and Homo habilis, together with manufactured artefacts and abundant large and micro-fauna. Excavations in Olduvai Gorge have been recently resumed, with new aims and new results. This paper presents the results of the taphonomic analysis carried out on a fossil small-mammal assemblage recovered from FLK NW level 20, a layer overlying Tuff C, dated from 1.84 Ma. The analysis provides good evidence of a category 1 predator, most likely a barn owl, as the predator of the bone assemblage. Trampling and sediment compression might influence postdepositional breakage of the bones. This study is especially relevant since previous taphonomic analyses carried out at levels above and below this sample led to inconclusive results due to a low number of fossils (Fernández-Jalvo et al., 1998). The new sample provides new information to reconstruct the paleoenvironmental context in which early hominins inhabited.

Type
Special Issue Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, P. Owls, caves and fossils. (1990). Natural History Museum Publications, London.Google Scholar
Andrews, P., and Evans, E.M.N. Small mammal bone accumulations produced by mammalian carnivores. Paleobiology 9, (1983). 289307.CrossRefGoogle Scholar
Behrensmeyer, A.K. The taphonomy and paleoecology of plio-pleistocene vertebrate assemblages east of Lake Rudolf, Kenya. Bulletin of the Museum of Comparative Zoology 145, l0 (1975). 473574.Google Scholar
Behrensmeyer, A.K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, (1978). 150162.CrossRefGoogle Scholar
Behrensmeyer, A.K., and Kidwell, S.M. Taphonomy's contributions to paleobiology. Paleobiology 11, 1 (1985). 105119. Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/2400427 Google Scholar
Blumenschine, R.J., Peters, C.R., Masao, F.T., Clarke, R.J., Deino, A.L., Hay, R.L., Swisher, C.C., Stanistreet, I.G., Ashley, G.M., McHenry, L.J., Sikes, N.E., van der Merwe, N.J., Tactikos, J.C., Cushing, A.E., Deocampo, D.M., Njau, J.K., and Ebert, J.I. Late Pliocene Homo and hominid land use from Western Olduvai Gorge, Tanzania. Science 299, (2003). 12171221.CrossRefGoogle ScholarPubMed
Cramp, S. The birds of the western Palearctic, vol. 4. Terns to woodpeckers. (1985). Oxford University Press, Oxford.Google Scholar
Denys, C. Nouveaux critères de reconaissance des concentrations de microvértebres d'après l'étude des pelotes de chouettes du Bostwana (Afrique australe). Bulletin du Muséum National d'Histoire Naturelle, Paris 7, (1985). 879933.CrossRefGoogle Scholar
Denys, C. Le gisement Pliocene de Laetoli (Tanzanie, Afrique de l'Est): analyse taphonomique des assemblages de microvertebres. Paleontographica 194, (1986). 6998.Google Scholar
Denys, C., Fernández-Jalvo, Y., and Dauphin, Y. Experimental taphonomy: preliminary results of the digestion of micromammal bones in laboratory. Comples Rendus de l' Académie des Sciences, Serie Ila 321, (1995). 803809.Google Scholar
Dodson, P. The significance of small bones in paleoecological interpretation. Contributions to Geology 12, (1973). 1519.Google Scholar
Dodson, P., and Wexlar, D. Taphonomic investigations of owl pellets. Paleobiology 5, (1979). 275284.CrossRefGoogle Scholar
Fernández-Jalvo, Y. Small mammal Taphonomy at la Trinchera de Atapuerca (Burgos, Spain). A remarkable example of taphonomic criteria used for stratigraphic correlations and palaeoenvironmental interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 114, (1995). 167195.CrossRefGoogle Scholar
Fernández-Jalvo, Y., and Andrews, P. Small mammal taphonomy of Gran Dolina, Atapuerca (Burgos), Spain. Journal of Archaeological Science 19, (1992). 407428.CrossRefGoogle Scholar
Fernández-Jalvo, Y., Denys, C., Andrews, P., Williams, T., Dauphin, Y., and Humphreys, L. Taphonomy and palaeoecology of Olduvai Bed-I (Pleistocene, Tanzania). Journal of human evolution 34, (1998). 137172.CrossRefGoogle Scholar
Fernández-López, S. La evolución tafonómica (un planteamiento neodarwinista). Boletin de la Real Sociedad Española de Historia Natural (Seccion Geologica) 79, (1981). 243254.Google Scholar
Fernández-López, S. Taphonomic concepts for a theoretical biochronology. Revista Española de Paleontología 6, (1991). 3749.Google Scholar
Fernández-López, S. Tafonomía y fosilización. Meléndez, B. Tratado de Paleontología. (1999). Consejo Superior de Investigaciones Científicas, Madrid. 51107.Google Scholar
Glue, D.E. Avian predator pellet analysis and the mammalogist. Mammal Review 1, (1971). 5362.CrossRefGoogle Scholar
Gómez, G. Analysis of bone modifications of Bubo virginianus’ pellets from Argentina. Journal of Taphonomy 3, (2005). 116.Google Scholar
Korth, W.W. Taphonomy of microvertebrate fossil assemblages. Annals of the Carnegie Museum 48, (1979). 235285.CrossRefGoogle Scholar
Lyman, R.L. Vertebrate taphonomy. (1994). Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Matthews, T., Denys, C., and Parkington, J.E. The palaeoecology of the micromammals from the late middle Pleistocene site of Hoedjiespunt 1 (Cape Province, South Africa). Journal of Human Evolution 49, (2005). 432451.CrossRefGoogle ScholarPubMed
Mikkola, H. Owls of Europe. (1983). T. & A.D. Poyser, Staffordshire.Google Scholar
Montalvo, C.I., Melchor, R.N., Visconti, G., and Cerdeño, E. Vertebrate taphonomy in loess-palaeosol deposits: a case study from the late Miocene of central Argentina. Geobios 41, (2008). 133143.CrossRefGoogle Scholar
Stoetzel, E., Marion, L., Nespoulet, R., Abdeljalil El Hajraoui, M., Denys, C., in press. Taphonomy and Palaeoecology of the Late Pleistocene to Middle Holocene Small Mammal succession of El Harhoura 2 cave (Rabat-Témara, Morocco). Journal of Human Evolution.Google Scholar
Voorhies, M.R. Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Contributions to Geology, Special paper 1, (1969). 169.Google Scholar
Williams, J.P., (2001). Small mammal deposits in archaeology: a taphonomic investigation of Tyto alba (barn owl) nesting and roosting sites. PhD. Thesis. University of Sheffield, .Google Scholar
Wolff, R.G. Hydrodynamic sorting and ecology of a pleistocene mammalian assemblage form California (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 13, (1973). 91101.CrossRefGoogle Scholar