Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T05:02:51.175Z Has data issue: false hasContentIssue false

Oceanography in northwestern Europe during the last interglacial from intrashell δ18O ranges in Littorina Littorea gastropods

Published online by Cambridge University Press:  20 January 2017

Johan Burman*
Affiliation:
Department of Earth Sciences, Marine Geology, University of Gothenburg, Box 460, SE-405 30 Göteborg, Sweden
Tore Påsse
Affiliation:
Swedish Geological Survey, Guldhedsgatan 5A, SE-413 20 Göteborg, Sweden
*
*Corresponding author. Fax: +46 31 786 19 86. E-mail address:johan@gvc.gu.se (J. Burman).

Abstract

Coastal sea-surface temperature (SST) and sea-surface salinity (SSS), including seasonality, in northwest (NW) Europe during the early phase of the Eemian interglacial ca. 125 ka ago were reconstructed from Littorina littorea (common periwinkle) gastropods. The results were based on intra-annual δ18O analyses in recent and fossil shells, mainly originating from the sea of Kattegat (Sweden) and the English Channel (United Kingdom), and confined to intertidal settings. The Eemian L. littorea shells indicated annual SSTs in the range 8–18°C for the English Channel and 8–26°C for Kattegat. All specimens from the Eemian sites experienced summer SSTs of ca. 1–3°C above recent conditions. The estimated winter SST in the English Channel during the Eemian was comparable to modern measurements of ca. 8°C. However, the Kattegat region displayed Eemian winter SST approximately 8°C warmer than today, and similar to conditions in the western English Channel. The recent-fossil isotope analogue approach indicated high SSS above 35 practical salinity units (psu) for a channel south of England in full contact with the North Atlantic Ocean during the last interglacial. In addition, the Kattegat shells indicated a SSS of ca. 29 psu, which points out a North Sea affinity for this region during the Eemian.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, S.T., (1975). The Eemian freshwater deposit at Egernsund, South Jylland, and the Eemian landscape development in Denmark.. Danmarks Geologiske Undersøgelse, Årbog 1974, 4970.Google Scholar
Andreasson, F.P., Schmitz, B., Jönsson, E., (1999). Surface-water seasonality from stable isotope profiles of Littorina littorea shells: implications for paleoenvironmental reconstructions of coastal areas.. Palaios 14, 273281.CrossRefGoogle Scholar
Austin, W.E.N., Cage, A.G., Scourse, J.D., (2006). Mid-latitude shelf seas: a NW European perspective on the seasonal dynamics of temperature, salinity and oxygen isotopes.. The Holocene 16, 937947.Google Scholar
Berger, A.L., (1978). Long-term variations of caloric insolation resulting from the earth's orbital elements.. Quaternary Research 9, 139167.Google Scholar
Burman, J., Schmitz, B., (2005). Periwinkle (Littorina littorea) intrashell δ18O and δ13C records from the mid-Holocene Limfjord region, Denmark: a new high-resolution paleoenvironmental proxy approach.. The Holocene 15, 567575.CrossRefGoogle Scholar
Burman, J., Gustavsson, O., Segl, M., Schmitz, B., (2005). A simplified method of preparing phosphoric acid for stable isotope analyses of carbonates.. Rapid Communications in Mass spectrometry 19, 30863088.Google Scholar
Chappell, J., Shackleton, N.J., (1986). Oxygen isotopes and sea level.. Nature 324, 137140.Google Scholar
Chow, V., (1987). Patterns of growth and energy allocation in northern California populations of Littorina (Gastropoda: Prosobranchia).. Journal of Experimental Marine Biology and Ecology 110, 6989.CrossRefGoogle Scholar
Davies, K.H., Keen, D.H., (1985). The age of Pleistocene marine deposits at Portland, Dorset.. Proceedings of the Geologists Association 96, 217225.Google Scholar
Ekaratne, S.U.K., Crisp, D.J., (1984). Seasonal growth studies of intertidal gastropods from shell micro-growth band measurements, including a comparison with alternative methods.. Journal of the Marine Biological Association of the United Kingdom 64, 183210.Google Scholar
Epstein, S., Mayeda, T., (1953). Variation of O18 content of waters from natural sources.. Geochimica et Cosmochimica Acta 4, 213224.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., (1953). Revised carbonate- water temperature scale.. Geological Society of American Bulletin 64, 13151326.Google Scholar
Fairbanks, R.G., Matthews, R.K., (1978). The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies.. Quaternary Research 10, 181196.Google Scholar
Fairbanks, R.G., Charles, C.D., Wright, J.D., (1992). Origin of global meltwater pulses.. Taylor, R.E., Long, A., Kra, R.S. Radicarbon After Four Decades: an Interdisciplinary Perspective Springer-Verlag, New York.473500.Google Scholar
Fells, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., Pätzold, J., Al-Rousan, S.A., Al-Moghrabi, S.M., (2004). Increased seasonality in Middle East temperatures during the last interglacial period.. Nature 429, 164168.Google Scholar
Fröhlich, K., Grabczak, J., Rozanski, K., (1988). Deuterium and oxygen-18 in the Baltic Sea.. Chemical Geology 72, 7783.Google Scholar
Funder, S., Balic-Zunic, T., (2006). Hypoxia in the Eemian: mollusc faunas and sediment mineralogy from Cyprina clay in the southern Baltic region.. Boreas 35, 367377.Google Scholar
Funder, S., Demidov, I., Yelovicheva, Y., (2002). Hydrography and mollusc faunas of the Baltic and the White Sea-North Sea seaway in the Eemian.. Paleogeography, Paleoclimatology, Paleoecology 184, 275304.Google Scholar
Geary, D.H., Brieske, T.A., Bemis, B.E., (1992). The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of strombid gastropod shells.. Palaios 7, 7785.Google Scholar
Harley, C.D.G., (2002). Light availability indirectly limits herbivore growth and abundance in a high rocky intertidal community during the winter.. Limnology and Oceanography 47, 12171222.Google Scholar
Head, M.J., Seidenkrantz, M.-S., Janczyk-Kopikowa, Z., Marks, L., Gibbard, P.L., (2005). Last interglacial (Eemian) hydrographic conditions in the southeastern Baltic Sea, NE Europe, based on dinoflagellate cysts.. Quaternary International 130, 330.CrossRefGoogle Scholar
IPCC, (1990). In: Houghton, J.T., Jenkins, G.J., Ephraums, J.J. (Eds.), Climate change: the ICPP Scientific assessment.. Cambridge University Press, .Google Scholar
Jones, L.A.*, Irving, R.*, Cork, M., Coyle, M.D., Evans, D., Gilliland, P.M., Murray, A.R., (2004a). South Western Peninsula Marine Natural Area Profile: a contribution to regional planning and management of the seas around England Peterborough: English Nature.. (* Joint first authors).Google Scholar
Jones, L.A.*, Irving, R.*, Cosgrove, A.R.P., Coyle, M.D., Gilliland, P.M., Murray, A.R., (2004b). Eastern Channel Marine Natural Area Profile: a contribution to regional planning and management of the seas around England Peterborough: English Nature.. (* Joint first authors).Google Scholar
Jones, D.S., Allmon, W.D., (1995). Records of upwelling, seasonality and growth in stable isotope profiles of Pliocene mollusk shells from Florida.. Lethaia 28, 6174.Google Scholar
Joyce, A.E., (2006). The coastal temperature network and ferry route programme: long-term temperature and salinity observations.. Science Series Data Report, Cefas Lowestoft 43, 129 pp.Google Scholar
Knudsen, K.-L., Seidenkrantz, M.-S., Kristensen, P., (2002). Last interglacial and early glacial circulation in the northern North Atlantic Ocean.. Quaternary Research 58, 2226.Google Scholar
Kukla, G.J., Bender, M.L., de Beaulieu, J.-L., Bond, G., Broecker, W.S., Cleveringa, P., Gavin, J.E., Herbert, T.D., Imbrie, J., Jouzel, J., Keigwin, L.D., Knudsen, K.-L., McManus, J.F., Merkt, J., Muhs, D.R., Müller, H., Poore, R.Z., Porter, S.C., Seret, G., Shackleton, N.J., Turner, C., Tzedakis, P.C., Winograd, I.J., (2002). Last interglacial climates.. Quaternary Research 58, 213.Google Scholar
Lambeck, K., Purcell, A., Funder, S., Kjær, K.H., Larsen, E., Möller, P., (2006). Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling.. Boreas 35, 539575.Google Scholar
LeGrande, A.L., Lynch-Stieglitz, J., Farmer, E.C., (2004). Oxygen isotopic composition of Globorotalia truncatulinoides as a proxy for intermediate depth density.. Paleoceanography 19, 10.1029/2004PA001045 PA4025.Google Scholar
Leifsdóttir, Ó.E., Símonarson, L., (2002). The mesogastropod Littorina littorea (Linné 1758) in Iceland: paleobiogeography and migration.. Cainozoic Research 1, 312.Google Scholar
Levitus, S., and Boyer, T.P. (1994). World Ocean Atlas 1994. 4, Temperature, NOAA Atlas NESDIS, Washington, D.C. 117 pp.Google Scholar
Montoya, M., von Storch, H., (2000). Climate simulation for 125 kyr BP with a coupled ocean-atmosphere general circulation model.. Journal of Climate 13, 10571072.Google Scholar
Overpeck, J.T., Otto-Bliesner, B.L., Miller, G.H., Muhs, D.R., Alley, R.B., Kiehl, J.T., (2006). Paleoclimatic evidence for future ice-sheet instability and rapid sea-leval rise.. Science 311, 17471750.Google Scholar
PML–Plymouth Marine Laboratory, (2007). Accessible at http://www.pml.ac.uk/L4/ (last accessed 15 August 2007).Google Scholar
Reid, D.G., (1996). Systematics and evolution of Littorina.. Ray Society, London.Google Scholar
Rodhe, J., (1996). On the dynamics of the large-scale circulation of the Skagerrak.. Journal of Sea Research 35, 921.Google Scholar
Sejrup, H.P., Larsen, E., (1991). Eemian-Early Weichselian N-S temperature gradients; North Atlantic-NW Europe.. Quaternary International 10–12, 161166.Google Scholar
Shackleton, N.J., (1974). Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial.. Colloques Internationaux du Centre National de la Recherche Scientifique 219, 203209.Google Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., (2003). Marine isotope substage 5e and the Eemian interglacial.. Global and Planetary Change 36, 151155.Google Scholar
Svansson, A., (1975). Physical and chemical oceanography of the Skagerrak and the Kattegat Fishery Board of Sweden, Institute of Marine Research, Report No.1.. 188.Google Scholar
Watson, D.C., Norton, T.A., (1985). Dietary preferences of the common periwinkle, Littorina littorea (L.).. Journal of Experimental Marine Biology and Ecology 88, 193211.Google Scholar
Weaver, A.J., Hughes, T.M.C., (1994). Rapid interglacial climate fluctuation driven by North Atlantic Ocean circulation.. Nature 367, 447450.Google Scholar
Zagwijn, W.H., (1996). The Pleistocene of the Netherlands with special reference to glaciation and terrace formation.. Quaternary Science Reviews 5, 341345.CrossRefGoogle Scholar