Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:36:12.744Z Has data issue: false hasContentIssue false

Mid- to late Holocene environmental and climatic changes in New Caledonia, southwest tropical Pacific, inferred from the littoral plain Gouaro-Déva

Published online by Cambridge University Press:  20 January 2017

Denis Wirrmann*
Affiliation:
Centre IRD France Nord, Unité 182, Paléoproxus, Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN UMR 7159 (IRD/CNRS/UPMC/MNHN) - Institut Pierre-Simon Laplace, 32 Avenue Henri Varagnat, 93143 Bondy cedex, France
Anne-Marie Sémah
Affiliation:
Centre IRD France Nord, Unité 182, Paléoproxus, Laboratoire d'Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN UMR 7159 (IRD/CNRS/UPMC/MNHN) - Institut Pierre-Simon Laplace, 32 Avenue Henri Varagnat, 93143 Bondy cedex, France
Jean-Pierre Debenay
Affiliation:
Institut de recherche pour le développement (IRD), UR PALÉOTROPIQUE, BP A5, 98848 Nouméa cedex, Nouvelle-Calédonie
Magali Chacornac-Rault
Affiliation:
Dpt. de Préhistoire, Muséum national d'histoire naturelle, (MNHN) UMR 7194, USM 204, 1 rue René Panhard, 75013 Paris, France
*
Corresponding author. Fax: + 33 148 025 554. E-mail address:denis.wirrmann@ird.fr (D. Wirrmann).

Abstract

Multiproxy analysis of three littoral cores from western New Caledonia supports the hypothesis that the main controlling factors of environmental changes are sea-level change, ENSO variability and extra-tropical phenomena, such as the Medieval Warm Period (MWP) marked by a tendency for La Niña-like conditions in the tropical Pacific. The record starts during the late Holocene sea-level rise when the terrestrial vegetation indicated wet and cool conditions. The site was a coastal bay definitely transformed into a freshwater swamp at around 3400 cal yr BP, after the rapid drawdown of sea level to its current level. Sediments and foraminiferal assemblages indicated subsequent episodes of freshwater infillings, emersion or very high-energy conditions, likely related to climatic changes and mostly controlled by ENSO variability. Between 2750 and 2000 cal yr BP, relatively dry and cool climate prevailed, while wetter conditions predominated between ca. 1800 and 900 cal yr BP. The Rhizophoraceae peak between ca. 1080 and 750 cal yr BP, coeval with the MWP, may indicate a global phenomenon. Microcharcoal particles present throughout the record increased after 1500 cal yr BP, suggesting an anthropogenic source. From ca. 750 cal yr BP the appearance of current type of vegetation marks the human impact.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertaux, J., Froehlich, F., and Ildefonse, P. Multicomponent analysis of FTIR spectra; quantification of amorphous and crystallized mineral phases in synthetic and natural sediments. Journal of Sedimentary Research 68, (1998). 440447.CrossRefGoogle Scholar
Blaize, S., Lacoste, D., (1995). Atlas climatique de la Nouvelle-Calédonie. METEO-FRANCE - Direction Interrégionale de Nouvelle-Calédonie et de Wallis et Futuna, Nouméa.Google Scholar
Bryan, S.E., Cook, A., Evans, J.P., Colls, P.W., Wells, M.G., Lawrence, M.G., Jell, J.S., Greig, A., and Leslie, R. Pumice rafting and faunal dispersion during 2001–2002 in the Southwest Pacific: record of a dacitic submarine explosive eruption from Tonga. Earth and Planetary Science Letters 227, (2004). 135154.Google Scholar
Cabioch, G. Postglacial reef development in the South-West Pacific: case studies from New Caledonia and Vanuatu. Sedimentary Geology 159, (2003). 4359.Google Scholar
Cabioch, G., Thomassin, B.A., and Lecolle, J.F. Âge d'émersion des récifs frangeants holocènes autour de la “Grande Terre” de Nouvelle-Calédonie (SO Pacifique); nouvelle interprétation de la courbe des niveaux marins depuis 8000 ans B.P.. Comptes Rendus de l'Académie des Sciences Série II 308, (1989). 419425.Google Scholar
Cabioch, G., Montaggioni, L., Thouveny, N., Frank, N., Sato, T., Chazottes, V., Dalamasso, H., Payri, C., Pichon, M., and Sémah, A.-M. The chronology and structure of the western New Caledonian barrier reef tracts. Palaeogeography, Palaeoclimatology, Palaeoecology 268, (2008). 91105.Google Scholar
Cabioch, G., Wirrmann, D., Sémah, A.-M., Corrège, T., and Le Cornec, F. Évolution des paléoenvironnements dans le Pacifique lors de la dernière déglaciation: exemples en Nouvelle-Calédonie et au Vanuatu. Journal de la Société des Océanistes 126–127, (2008). 2539.CrossRefGoogle Scholar
Cane, M.A. The evolution of El Niño, past and future. Earth and Planetary Science Letters 230, (2005). 227240.CrossRefGoogle Scholar
Carson, M.T. Correlation of environmental and cultural chronology in New Caledonia. Geoarchaeology 23, (2008). 695714.Google Scholar
Clark, J.T., Cole, A.O., and Nunn, P.D. Environmental change and human prehistory on Totoya Island, Fiji. Galipaud, J.-C., and Lilley, I. Le Pacifique de 5000 à 2000 avant le présent: suppléments à l'histoire d'une colonisation/The Pacific from 5000 to 2000 BP: colonisation and transformations. (1999). IRD, Paris. 227240.Google Scholar
Dagostini, G., Chauvin, C., Munzinger, J., Jourdan, H., (2006). Cartographie et inventaires botanique et entomologique de la forêt sèche de Gouaro Deva. Rapport Final. CONVENTION DE COLLABORATION Province Sud / IRD N° 3 3–06 / DRN-ENV, in: IRD (Ed.). IRD, Nouméa., p. 47.Google Scholar
Debenay, J.-P., and Cabioch, G. Recent and Quaternary foraminifera collected around New Caledonia. Payri, C.E., and RicherdeForges, B. Compendium of Marine Species from New Caledonia. First ed. (2006). IRD, Nouméa. 6791.Google Scholar
Debenay, J.-P., and Guillou, J.-J. Ecological transitions indicated by foraminiferal assemblages in paralic environments. Estuaries and Coasts 25, (2002). 11071120.Google Scholar
Debenay, J.-P., Patrona, L.D., and Goguenheim, H. Colonization of coastal environments by Foraminifera: shrimp ponds of New Caledonia. Journal of Foraminiferal Research 39, (2009). 249266.Google Scholar
Delcroix, T., and Lenormand, O. ENSO signals in the vicinity of New Caledonia, South Western Pacific. Oceanologica Acta 20, (1997). 481491.Google Scholar
Dickinson, W.R., and Shutler, R.J. Implications of petrographic temper analysis for Oceanian prehistory. Journal of World Prehistory 14, (2000). 203266.Google Scholar
Espirat, J.J., (1971). Carte et notice explicative de la carte géologique de la Nouvelle-Calédonie à l'échelle du 1 / 50000 : feuille Bourail. B.R.G.M - Territoire de la Nouvelle-Calédonie, in: B.R.G.M (Ed.). B.R.G.M, Nouméa., p. 47.Google Scholar
Fatela, F., and Taborda, R. Confidence limits of species proportions in microfossil assemblages. Marine Micropaleontology 45, (2002). 169174.Google Scholar
Field, J.S. Environmental and climatic considerations: a hypothesis for conflict and the emergence of social complexity in Fijian prehistory. Journal of Anthropological Archaeology 23, (2004). 7999.CrossRefGoogle Scholar
Frimigacci, D. Où sont allés les potiers Lapita de Bourail ?. Galipaud, J.-C., and Lilley, I. Le Pacifique de 5000 à 2000 avant le présent: suppléments à l'histoire d'une colonisation/The Pacific from 5000 to 2000 BP: colonisation and transformations. (1999). IRD, Paris. 6384.Google Scholar
Frimigacci, D., and Siorat, J.-P. L'îlot Vert. (Site archéologique des périodes Koné et Naia de la Nouvelle-Calédonie). Journal de la Sociéré des Océanistes 1, (1988). 321.Google Scholar
Gagan, M.K., Hendy, E.J., Haberle, S.G., and Hantoro, W.S. Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern Oscillation. Quaternary International 118–119, (2004). 127143.Google Scholar
Galipaud, J.-C. New Caledonia: some recent archaeological perspectives. Davidson, J.M., Irwin, G., Leach, B.F., Pawley, A., and Brown, D. Oceanic Culture History: Essays in Honour of Roger Green. (1996). New Zealand Journal of Archaeology, Auckland. 297305.Google Scholar
Gray, R.D., Drummond, A.J., and Greenhill, S.J. Language phylogenies reveal expansion pulses and pauses in Pacific settlement. Science 323, (2009). 479483.Google Scholar
Hope, G., O'Dea, D., and Southern, W. Holocene vegetation histories in the Western Pacific: alternative records of human impact. Galipaud, J.-C., and Lilley, I. Le Pacifique de 5000 à 2000 avant le présent: suppléments à l'histoire d'une colonisation/The Pacific from 5000 to 2000 BP: colonisation and transformations. (1999). IRD, Paris. 387404.Google Scholar
Hurles, M.E., Matisoo-Smith, E., Gray, R.D., and Penny, D. Untangling oceanic settlement: the edge of the knowable. Trends in Ecology & Evolution 18, (2003). 531540.Google Scholar
Jaffré, T., Morat, P., Veillon, J.-M., (1993). Étude floristique et phytogéographique de la forêt sclérophylle de Nouvelle-Calédonie. Bulletin du Muséum national d'Histoire naturelle, section B, Adansonia, botanique, phytochimie 15, section B, Adansonia , 107146.Google Scholar
Jaffré, T., Bouchet, P., and Veillon, J.-M. Threatened plants of New Caledonia: is the system of protected areas adequate?. Biodiversity and Conservation 7, (1998). 109135.Google Scholar
Jaffré, T., Morat, P., Veillon, J.-M., Rigault, F., Dagostini, G., (2001). Composition et caractéristiques de la flore indigène de Nouvelle-Calédonie/Composition and characteristics of the native flora of New Caledonia. in: IRD (Ed.), Documents Scientifiques et Techniques. IRD, Nouméa., p. 121 + 111 Annexes.Google Scholar
Langton, S.J., Linsley, B.K., Robinson, R.S., Rosenthal, Y., Oppo, D.W., Eglinton, T.I., Howe, S.S., Djajadihardja, Y.S., and Syamsudin, F. 3500 yr record of centennial-scale climate variability from the western Pacific Warm Pool. Geology 36, (2008). 795798.Google Scholar
Loeblich, A.R.J., and Tappan, H. Foraminiferal Genera and their Classification. (1988). Springer, New York.Google Scholar
Maitrepierre, L. Climate variability and trend in New Caledonia. APN Workshop on Climate Variability and Trends in Oceania, Auckland, Australia. (2000). 123.Google Scholar
Mann, M.E., Cane, M.A., Zebiak, S.E., and Clement, A. Volcanic and solar forcing of the Tropical Pacific over the past 1000 Years. Journal of Climate 18, (2005). 447456.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., and Ni, F. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, (2009). 12561260.Google Scholar
Manton, M.J., Della-Marta, P.M., Haylock, M.R., Hennessy, K.J., Nicholls, N., Chambers, L.E., Collins, D.A., Daw, G., Finet, A., Gunawan, D., Inape, K., Isobe, H., Kestin, T.S., Lefale, P., Leyu, C.H., Lwin, T., Maitrepierre, L., Ouprasitwong, N., Page, C.M., Pahalad, J., Plummer, N., Salinger, M.J., Suppiah, R., Tran, V.L., Trewin, B., Tibig, I., and Yee, D. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology 21, (2001). 269284.Google Scholar
Maurizot, P., (2006). Évaluation du potentiel hydrogéologique du domaine de Gouaro-Déva. Phase préliminaire d'amélioration de la couverture cartographique géologique. Rapport final, in: BRGM (Ed.), Nouméa., p. 72.Google Scholar
McGregor, H.V., and Gagan, M.K. Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation. Geophysical Research Letters 31, (2004). L11204 Google Scholar
Morlière, A., and Rebert, J.-P. Rainfall shortage and El Niño—Southern Oscillation in New Caledonia, southwestern Pacific. Monthly Weather Review 114, (1986). 11311137.Google Scholar
Murray, J.W. Ecology and Palaeoecology of Benthic Foraminifera. (1991). Harlow, Essex.Google Scholar
Nicet, J.B., and Delcroix, T. ENSO-related precipitation changes in New Caledonia, Southwestern Tropical Pacific: 1969–98. Monthly Weather Review 128, (2000). 30013006.2.0.CO;2>CrossRefGoogle Scholar
Pirazzoli, P.A., Montaggioni, L.F., Salvat, B., and Faure, G. Late Holocene sea level indicators from twelve atolls in the central and eastern Tuamotus (Pacific Ocean). Coral Reefs 7, (1988). 5768.Google Scholar
Ranasinghe, R., and Pattiaratchi, C. The seasonal closure of tidal inlets: Wilson Inlet—a case study. Coastal Engineering 37, (1999). 3756.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. IntCal04 terrestrial radiocarbon age calibration, 0–26 Cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Riedinger, M.A., Steinitz-Kannan, M., Last, W.M., and Brenner, M. A 6100 14 C yr record of El Niño activity from the Galapagos Islands. Journal of Paleolimnology 27, (2002). 17.Google Scholar
Rodbell, D.T., Seltzer, G.O., Anderson, D.M., Abbott, M.B., Enfield, D.B., and Newman, J.H. An 15,000-year record of El Niño-driven alluviation in Southwestern Ecuador. Science 283, (1999). 516520.CrossRefGoogle ScholarPubMed
Sand, C. The chronology of Lapita ware in New Caledonia. Antiquity 71, (1997). 539547.Google Scholar
Sand, C., Bolé, J., Ouetcho, A.J., Baret, D., and Lagarde, L. Rapport d'étude archéologique sur le projet d'hôtel 4 étoiles de Déva (Commune de Bourail). Département Archéologie de la Direction des Affaires Culturelles et Coutumières de Nouvelle-Calédonie, Nouméa. (2008). 160 Google Scholar
Sandweiss, D.H., Maasch, K.A., Burger, R.L., Richardson, J.B.I., Rollins, H.B., and Clement, A. Variation in Holocene El Niño frequencies: climate records and cultural consequences in ancient Peru. Geology 29, (2001). 603606.Google Scholar
Sémah, A.-M. Recherche des traces de la première conquête des vallées dans le nord de la Grande Terre (Nouvelle-Calédonie). Archéologie en grotte et étude du paléoenvironnement à Koumac. Journal de la Société des Océanistes 2, (1998). 169178.Google Scholar
Sémah, F., Sémah, A.-M., and Forestier, H. Nouvelles données sur le peuplement ancien de la Nouvelle-Calédonie: la vallée de la Koumac (Grande Terre). Comptes Rendus de l'Académie des Sciences, Series IIA. Earth and Planetary Science 320, (1995). 539545.Google Scholar
Sémah, A.-M., Sémah, F., and Wirrmann, D. Climate and environment during the early coastal and inland colonization of New Caledonia. The 17th Congress of Indo-Pacific Prehistory Association. (2002). Academia Sinica, Tapei, Taiwan. 231232.Google Scholar
Soltis, P.S., Brockington, S.F., Yoo, M.-J., Piedrahita, A., Latvis, M., Moore, M.J., Chanderbali, A.S., and Soltis, D.E. Floral variation and floral genetics in basal angiosperms. American Journal of Botany 96, (2009). 110128.CrossRefGoogle ScholarPubMed
Stevenson, J. Human impact from the paleoenvironmental record on New Caledonia. Galipaud, J.-C., and Lilley, I. The Pacific from 5000 to 2000 BP. Colonisation and Transformations. (1999). IRD, Port-Vila, Vanuatu. 251258.Google Scholar
Stevenson, J. A late-Holocene record of human impact from the southwest coast of New Caledonia. The Holocene 14, (2004). 888898.CrossRefGoogle Scholar
Stevenson, J., and Dodson, J.R. Palaeoenvironmental evidence for human settlement of New Caledonia. Archaeology in Oceania 30, (1995). 3641.Google Scholar
Stevenson, J., Dodson, J.R., and Prosser, I.P. A late Quaternary record of environmental change and human impact from New Caledonia. Palaeogeography, Palaeoclimatology, Palaeoecology 168, (2001). 97123.Google Scholar
Wirrmann, D., Sémah, A.-M., and Chacornac-Rault, M. Late Holocene paleoenvironment in northern New Caledonia, Southwestern Pacific, from a multiproxy analysis of lake sediments. Quaternary Research 66, (2006). 213232.Google Scholar
Woodroffe, C.D. Sea level studies/Coral records. Eiffert, H. Encyclopedia of Quaternary Science. (2007). Elsevier, 30063015.Google Scholar
Supplementary material: PDF

Wirrmann et al. Supplementary Material

Supplementary Material

Download Wirrmann et al. Supplementary Material(PDF)
PDF 1.8 MB