Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:05:10.121Z Has data issue: false hasContentIssue false

Implications of a Bayesian radiocarbon calibration of colonization ages for mammalian megafauna in glaciated New York State after the Last Glacial Maximum

Published online by Cambridge University Press:  20 January 2017

Robert S. Feranec*
Affiliation:
Research and Collections, New York State Museum, Albany, NY 12230, USA
Andrew L. Kozlowski
Affiliation:
Research and Collections, New York State Museum, Albany, NY 12230, USA
*
Corresponding author. E-mail address:robert.feranec@nysed.gov (R.S. Feranec).

Abstract

To understand what factors control species colonization and extirpation within specific paleoecosystems, we analyzed radiocarbon dates of megafaunal mammal species from New York State after the Last Glacial Maximum. We hypothesized that the timing of colonization and extirpation were both driven by access to preferred habitat types. Bayesian calibration of a database of 39 radiocarbon dates shows that caribou (Rangifer tarandus) were the first colonizers, then mammoth (Mammuthus sp.), and finally American mastodon (Mammut americanum). The timing of colonization cannot reject the hypothesis that colonizing megafauna tracked preferred habitats, as caribou and mammoth arrived when tundra was present, while mastodon arrived after boreal forest was prominent in the state. The timing of caribou colonization implies that ecosystems were developed in the state prior to 16,000 cal yr BP. The contemporaneous arrival of American mastodon with Sporormiella spore decline suggests the dung fungus spore is not an adequate indicator of American mastodon population size. The pattern in the timing of extirpation is opposite to that of colonization. The lack of environmental changes suspected to be ecologically detrimental to American mastodon and mammoth coupled with the arrival of humans shortly before extirpation suggests an anthropogenic cause in the loss of the analyzed species.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agenbroad, L.D. (1984). New World mammoth distribution.Martin, P.S., Klein, R.M. Quaternary Extinctions: A Prehistoric Revolution University of Arizona Press, Tucson.90108.Google Scholar
Agenbroad, L.D. (2003). New absolute dates and comparisons for California’s Mammuthus exilis. Deinsea 9, 116.Google Scholar
Agenbroad, L.D. (2005). North American proboscideans: mammoths: the state of knowledge, 2003. Quaternary International 126–128, 7392.10.1016/j.quaint.2004.04.016Google Scholar
Aitken, M.J. (2014). Science-Based Dating in Archaeology. Routledge, Google Scholar
Anderson, D.G. (1990). The Paleoindian colonization of eastern North America.Tankersley, K.B., Isaac, B.L. Early Paleoindian Economies of Eastern North America. JAI Press, Greenwich.163216.Google Scholar
Anderson, D.G., Goodyear, A.C., Kennett, J., and West, A. (2011). Multiple lines of evidence for possible Human population decline/settlement reorganization during the early Younger Dryas. Quaternary International 242, 570583.10.1016/j.quaint.2011.04.020Google Scholar
Ashworth, A.C., Schwert, D.P., Watts, W.A., Wright, H.E. Jr. (1981). Plant and insect fossils at Norwood in south-central Minnesota: a record of late-glacial succession. Quaternary Research 16, 6679.10.1016/0033-5894(81)90128-9Google Scholar
Barnosky, A.D., and Lindsey, E.L. (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, 1029.10.1016/j.quaint.2009.11.017CrossRefGoogle Scholar
Barnosky, A.D., Koch, P.L., Feranec, R.S., Wing, S.L., and Shabel, A.B. (2004). Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 7075.10.1126/science.1101476Google Scholar
Baumann, E.J., and Crowley, B.E. (2015). Stable isotopes reveal ecological differences amongst now-extinct proboscideans from the Cincinnati region, USA. Boreas 44, 240254.10.1111/bor.12091Google Scholar
Bayliss, A. (2007). Bayesian buildings: an introduction for the numerically challenged. Vernacular Architecture 38, 7586.10.1179/174962907X248074Google Scholar
Bayliss, A. (2009). Rolling out revolution: using radiocarbon dating in archaeology. Radiocarbon 51, 123147.10.2458/azu_js_rc.51.3483Google Scholar
Bayliss, A., Bronk Ramsey, C., van der Plicht, J., and Whittle, A. (2007). Bradshaw and Bayes: towards a timetable for the neolithic. Cambridge Archaeological Journal 17, 128.10.1017/S0959774307000145Google Scholar
Belyea, L.R., and Lancaster, J. (1999). Assembly rules within a contingent ecology. Oikos 86, 402416.10.2307/3546646Google Scholar
Blockley, S.P.E., Lowe, J.J., Walker, M.J.C., Asioli, A., Trincardi, F., Coope, G.R., and Donahue, R.E. (2004). Bayesian analysis of radiocarbon chronologies: examples from the European Late-Glacial. Journal of Quaternary Science 19, 159175.10.1002/jqs.820Google Scholar
Boakes, E.H., Rout, T.M., and Collen, B. (2015). Inferring species extinction: the use of sighting records. Methods in Ecology and Evolution 6, 678687.10.1111/2041-210X.12365Google Scholar
Bradshaw, C.J.A., Cooper, A., Turney, C.S.M., and Brook, B.W. (2012). Robust estimates of extinction time in the geological record. Quaternary Science Reviews 33, 1419.10.1016/j.quascirev.2011.11.021Google Scholar
Bronk Ramsey, C.B. (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.10.2458/azu_js_rc.51.3494Google Scholar
Bronk Ramsey, C., Higham, T., Bowles, A., and Hedges, R. (2004). Improvements to the pretreatment of bone at Oxford. Radiocarbon 46, 155163.10.2458/azu_js_rc.46.4256Google Scholar
Bronk Ramsey, C.B., Buck, C.E., Manning, S.W., Reimer, P., and van der Plicht, H. (2006). Developments in radiocarbon calibration for archaeology. Antiquity 80, 783798.10.1017/S0003598X00094424Google Scholar
Bronk Ramsey, C., Dee, M.W., Rowland, J.M., Higham, T.F.G., Harris, S.A., Brock, F., Quiles, A., Wild, E.M., Marcus, E.S., and Shortland, A.J. (2010). Radiocarbon-based chronology for Dynastic Egypt. Science 328, 15541557.10.1126/science.1189395Google Scholar
Bronk Ramsey, C., Staff, R.A., Bryant, C.L., Brock, F., Kitagawa, H., van der Plicht, J., Schlolaut, G., Marshall, M.H., Brauer, A., Lamb, H.F., Payne, R.L., Tarasov, P.E., Haraguchi, T., Gotanda, K., Yonenobu, H., Yokoyama, Y., Tada, R., and Nakagawa, T. (2012). A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338, 370374.10.1126/science.1226660CrossRefGoogle ScholarPubMed
Brook, B.W., and Barnosky, A.D. (2012). Quaternary Extinctions and Their Link to Climate Change.Hannah, L. Saving a Million Species. Island Press/Center for Resource Economics, 179198.Google Scholar
Brown, T.A., Nelson, D.E., Vogel, J.S., and Southon, J.R. (1988). Improved collagen extraction by modified Longin method. Radiocarbon 30, 171177.10.2458/azu_js_rc.30.1096Google Scholar
Buck, C.E., and Bard, E. (2007). A calendar chronology for Pleistocene mammoth and horse extinction in North America based on Bayesian radiocarbon calibration. Quaternary Science Reviews 26, 20312035.10.1016/j.quascirev.2007.06.013Google Scholar
Buck, C.E., and James, G.N. (1999). BCal: an on-line Bayesian radiocarbon calibration tool. Internet Archaeology 7, (http://intarch.ac.uk/journal/issue7/buck/)Google Scholar
Buck, C.E., and Meson, B. (2015). On being a good Bayesian. World Archaeology 47, 567584.10.1080/00438243.2015.1053977Google Scholar
Buck, C.E., and Millard, A. (2004). Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Springer, Google Scholar
Buck, C.E., Cavanagh, W.G., and Litton, C. (1996). Bayesian Approach to Interpreting Archaeological Data. Wiley, Chichester.Google Scholar
Chapin, F.S., Walker, L.R., Fastie, C.L., and Sharman, L.C. (1994). Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs 64, 149175.10.2307/2937039Google Scholar
Chase, J.M. (2003). Community assembly: when should history matter?. Oecologia 136, 489498.10.1007/s00442-003-1311-7Google Scholar
Chase, J.M., and Myers, J.A. (2011). Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366, 23512363.10.1098/rstb.2011.0063Google Scholar
Chen, I.-C., Hill, J.K., Ohlemüller, R., Roy, D.B., and Thomas, C.D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333, 10241026.10.1126/science.1206432Google Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., and McCabe, A.M. (2009). The Last Glacial Maximum. Science 325, 710714.10.1126/science.1172873Google Scholar
Cody, M.L., and Diamond, J.M. (1975). Ecology and Evolution of Communities. Harvard University Press, Google Scholar
Cooper, A., Turney, C., Hughen, K.A., Brook, B.W., McDonald, H.G., and Bradshaw, C.J.A. (2015). Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602606.10.1126/science.aac4315Google Scholar
Crête, M., Huot, J., and Gauthier, L. (1990). Food selection during early lactation by caribou calving on the tundra in Quebec. Arctic 43, 6065.Google Scholar
Cringan, A.T. (1957). History, food habits and range requirements of the woodland caribou of continental North America. Transactions of the North American Wildlife Conference 22, 485501.Google Scholar
Davis, M.B. (1983). Quaternary history of deciduous forests of eastern North America and Europe. Annals of the Missouri Botanical Garden 70, 550563.10.2307/2992086Google Scholar
Davis, M.B., and Shaw, R.G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673679.10.1126/science.292.5517.673Google Scholar
Diamond, J.M. (1975). Assembly of species communities.Cody, M.L., Diamond, J.M. Ecology and Evolution of Communities. Harvard University Press, Cambridge, MA.342444.Google Scholar
Dreimanis, A. (1968). Extinction of mastodons in eastern North America : testing a new climatic- environmental hypothesis.Google Scholar
Dyke, A.S. (2005). Late Quaternary vegetation history of northern North America based on pollen, macrofossil, and faunal remains. Géographie Physique et Quaternaire 59, 211262.10.7202/014755arGoogle Scholar
Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J., and Veillette, J.J. (2002). The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews, EPILOG 21, 931.10.1016/S0277-3791(01)00095-6Google Scholar
Ellis, K.G., Mullins, H.T., and Patterson, W.P. (2004). Deglacial to middle Holocene (16,600 to 6000 calendar years BP) climate change in the northeastern United States inferred from multi-proxy stable isotope data, Seneca Lake, New York. Journal of Paleolimnology 31, 343361.10.1023/B:JOPL.0000021853.03476.95Google Scholar
Ellis, C.J., Carr, D.H., and Loebel, T.J. (2011). The Younger Dryas and Late Pleistocene peoples of the Great Lakes region. Quaternary International 242, 534545.10.1016/j.quaint.2011.02.038Google Scholar
Fastie, C.L. (1995). Causes and ecosystem consequences of multiple pathways of primary succession at Glacier Bay, Alaska. Ecology 76, 18991916.10.2307/1940722Google Scholar
Feranec, R.S., and Kozlowski, A.L. (2010). AMS radiocarbon dates from Pleistocene and Holocene mammals housed in the New York State Museum, Albany, New York, USA. Radiocarbon 52, 205208.10.2458/azu_js_rc.52.3247Google Scholar
Feranec, R., and Kozlowski, A. (2012). New AMS radiocarbon dates from Late Pleistocene mastodons and mammoths in New York State, USA. Radiocarbon 54, 275279.10.2458/azu_js_rc.v54i2.16009Google Scholar
Fukami, T., Dickie, I.A., Paula Wilkie, J., Paulus, B.C., Park, D., Roberts, A., Buchanan, P.K., and Allen, R.B. (2010). Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecology Letters 13, 675684.10.1111/j.1461-0248.2010.01465.xGoogle Scholar
Funk, R.E., Steadman, D.W., Funk, R.E., and Steadman, D.W. (1994). Archaeological and Paleoenvironmental Investigations in the Dutchess Quarry Caves, Orange County, New York. Persimmon Press, Buffalo, NY.Google Scholar
Gill, J.L., Williams, J.W., Jackson, S.T., Lininger, K.B., and Robinson, G.S. (2009). Pleistocene megafaunal collapse, nPlant communities, and enhanced fire regimes in North America. Science 326, 11001103.10.1126/science.1179504Google Scholar
Graham, R.W., and Lundelius, E.L. (2010). FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0 Google Scholar
Graham, R.W., Lundelius, E.L., Graham, M.A., Schroeder, E.K., Toomey, R.S., Anderson, E., Barnosky, A.D., Burns, J.A., Churcher, C.S., Grayson, D.K., Guthrie, R.D., Harington, C.R., Jefferson, G.T., Martin, L.D., McDonald, H.G., Morlan, R.E., Semken, H.A., Webb, S.D., Werdelin, L., and Wilson, M.C. (1996). Spatial response of mammals to Late Quaternary environmental fluctuations. Science 272, 16011606.10.1126/science.272.5268.1601Google Scholar
Grootes, P.M., and Stuiver, M. (1997). Oxygen 18/16 variability in Greenland snow and ice with 10–3- to 105-year time resolution. Journal of Geophysical Research 102, 2645526470.10.1029/97JC00880Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnson, S., and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.Google Scholar
Guthrie, R.D. (2004). Radiocarbon evidence of mid-Holocene mammoths stranded on an Alaskan Bering Sea island. Nature 429, 746749.10.1038/nature02612Google Scholar
Haile, J., Froese, D.G., MacPhee, R.D.E., Roberts, R.G., Arnold, L.J., Reyes, A.V., Rasmussen, M., Nielsen, R., Brook, B.W., Robinson, S., Demuro, M., Gilbert, M.T.P., Munch, K., Austin, J.J., Cooper, A., Barnes, I., Möller, P., and Willerslev, E. (2009). Ancient DNA reveals late survival of mammoth and horse in interior Alaska. PNAS 106, 2235222357.10.1073/pnas.0912510106Google Scholar
Hartnagel, C.A., and Bishop, S.C. (1922). The mastodons, mammoths and other Pleistocene mammals of New York State: being a descriptive record of all known occurrences, New York State Museum Bulletin 241-242. University of the State of New York, State Education Dept, Google Scholar
Hodgson, J.A., Allmon, W.D., Sherpa, J.M., and Nester, P.L. (2008). Geology and taphonomy of the North Java Mastodon site, Wyoming County, New York. Paleontographica Americana 61, 385416.Google Scholar
Holman, J.A. (2001). In quest of Great Lakes Ice Age vertebrates. Michigan State University Press, East Lansing.Google Scholar
Jackson, S.T. (1990). Pollen source area and representation in small lakes of the northeastern United States. Review of Palaeobotany and Palynology 63, 5376.10.1016/0034-6667(90)90006-5Google Scholar
Jackson, S.T., and Blois, J.L. (2015). Community ecology in a changing environment: perspectives from the Quaternary. PNAS 112, 49154921.10.1073/pnas.1403664111Google Scholar
Jackson, S.T., Overpeck, J.T., Webb, T. III, Keattch, S.E., and Anderson, K.H. (1997). Mapped plant-macrofossil and pollen records of late Quaternary vegetation change in Eastern North America. Quaternary Science Reviews 16, 170.10.1016/S0277-3791(96)00047-9Google Scholar
Kahlke, R.-D. (2015). The maximum geographic extension of Late Pleistocene Mammuthusprimigenius (Proboscidea, Mammalia) and its limiting factors. Quaternary International10.1016/j.quaint.2015.03.023Google Scholar
Kennett, D.J., and Culleton, B.J. (2012). A Bayesian chronological framework for determining site seasonality and contemporaneity.Reitz, E.J., Quitmyer, I.R., Thomas, D.H. Seasonality and human mobility along the Georgia Bight. Anthropological Papers of the American Museum of Natural History 3749.Google Scholar
Koch, P.L., and Barnosky, A.D. (2006). Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250.Google Scholar
Koch, P.L., Hoppe, K.A., and Webb, S.D. (1998). The isotopic ecology of late Pleistocene mammals in North America: part 1. Florida. Chemical Geology 152, 119138.10.1016/S0009-2541(98)00101-6Google Scholar
Kurtén, B., and Anderson, E. (1980). Pleistocene Mammals of North America. Columbia University Press, Google Scholar
Larter, N.C., and Nagy, J.A. (1997). Peary caribou, Muskoxen and Banks Island forage: assessing seasonal diet similarities. Rangifer 17, 916.10.7557/2.17.1.378Google Scholar
Laub, R.S. (2003). The Hiscock Site: Late Pleistocene and Holocene Paleoecology and archaeology of western New York State. Bulletin of the Buffalo Society of Natural Sciences 37, 1327.Google Scholar
Laub, R.S., Miller, N.G., and Steadman, D.W. (1988). Late Pleistocene and early Holocene paleoecology and archeology of the eastern Great Lakes region. Bulletin of the Buffalo Society of Natural Sciences 33, 1316.Google Scholar
Lavergne, S., Mouquet, N., Thuiller, W., and Ronce, O. (2010). Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Review of Ecology, Evolution, and Systematics 41, 321350.10.1146/annurev-ecolsys-102209-144628Google Scholar
Linick, T.W., Damon, P.E., Donahue, D.J., and Jull, A.J.T. (1989). Accelerator mass spectrometry: the new revolution in radiocarbon dating. Quaternary International 1, 16.10.1016/1040-6182(89)90004-9Google Scholar
Lister, A.M., and Sher, A.V. (2015). Evolution and dispersal of mammoths across the Northern Hemisphere. Science 350, 805809.10.1126/science.aac5660Google Scholar
Lockwood, J.L., Powell, R.D., Nott, M.P., and Pimm, S.L. (1997). Assembling ecological communities in time and space. Oikos 80, 549553.10.2307/3546628Google Scholar
Lothrop, J.C., Newby, P.E., Spiess, A.E., and Bradley, J.W. (2011). Paleoindians and the Younger Dryas in the New England–Maritimes Region. Quaternary International 242, 546569.10.1016/j.quaint.2011.04.015Google Scholar
Lyons, S.K. (2003). A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy 84, 385402.10.1644/1545-1542(2003)084<0385:AQAOTR>2.0.CO;2Google Scholar
MacPhee, R.D.E. (1999). Extinctions in Near Time. Kluwer Academic/ Plenum Publishers, Google Scholar
Maenza-Gmelch, T.E. (1997a). )Vegetation, climate, and fire during the late-glacial–Holocene transition at Spruce Pond, Hudson Highlands, southeastern New York, USA. Journal of Quaternary Science 12, 1524.10.1002/(SICI)1099-1417(199701/02)12:1<15::AID-JQS283>3.0.CO;2-TGoogle Scholar
Maenza-Gmelch, T.E. (1997b). )Late-glacial–early Holocene vegetation, climate, and fire at Sutherland Pond, Hudson Highlands, southeastern New York, U.S.A.. Canadian Journal of Botany 75, 431439.10.1139/b97-045Google Scholar
Maglio, V.J. (1973). Origin and evolution of the Elephantidae. Transactions of the American Philosophical Society 63, 1149.Google Scholar
Marshall, C.R. (1990). Confidence Intervals on Stratigraphic Ranges. Paleobiology 16, 110.Google Scholar
Martin, P.S., and Klein, R.G. (1984). Quaternary Extinctions: A Prehistoric Revolution. University of Arizona Press, Tucson.Google Scholar
Martin, P.S., Wright, H.E. Jr. Pleistocene Extinctions The Search for a Cause. Yale University Press, Google Scholar
McInerney, G.J., Roberts, D.L., Davy, A.J., and Cribb, P.J. (2006). Significance of sighting rate in inferring extinction and threat. Conservation Biology 20, 562567.10.1111/j.1523-1739.2006.00377.xGoogle Scholar
Mead, J.I., and Meltzer, D.J. (1984). North American late Quaternary extinctions and the radiocarbon record.Martin, P.S., Klein, R.M. Quaternary Extinctions: A Prehistoric Revolution. Arizona University Press, 440450.Google Scholar
Mead, J.I., Agenbroad, L.D., Davis, O.K., and Martin, P.S. (1986). Dung of Mammuthus in the arid Southwest, North America. Quaternary Research 25, 121127.10.1016/0033-5894(86)90048-7Google Scholar
Menking, K.M., Peteet, D.M., and Anderson, R.Y. (2012). Late-glacial and Holocene vegetation and climate variability, including major droughts, in the Sky Lakes region of southeastern New York State. Palaeogeography, Palaeoclimatology, Palaeoecology 353–355, 4559.10.1016/j.palaeo.2012.06.033Google Scholar
Metcalfe, J.Z., Longstaffe, F.J., and Hodgins, G. (2013). Proboscideans and paleoenvironments of the Pleistocene Great Lakes: landscape, vegetation, and stable isotopes. Quaternary Science Reviews 76, 102113.Google Scholar
Miller, N.G. (1973). Late - glacial and postglacial vegetation change in Southwestern New York State, Bulletin of the New York State Museum 420. University of the State of New York, State Education Dept, Albany.Google Scholar
Miller, N.G. (2008). Contemporary and prior environments of the Hyde Park, New York, mastodon on the basis of associated plant macrofossils. Paleontographica Americana 61, 151181.Google Scholar
Miller, N.G., and Nester, P.L. (2006). Paleoecology of a late Pleistocene wetland and associated mastodon remains in the Hudson Valley, southeastern New York State. Geological Society of America Special Papers 399, 291304.Google Scholar
Moritz, C., Patton, J.L., Conroy, C.J., Parra, J.L., White, G.C., and Beissinger, S.R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322, 261264.10.1126/science.1163428Google Scholar
Newby, P., Bradley, J., Spiess, A., Shuman, B., and Leduc, P. (2005). A Paleoindian response to Younger Dryas climate change. Quaternary Science Reviews 24, 141154.10.1016/j.quascirev.2004.04.010Google Scholar
Owen-Smith, N. (2013). Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins. Journal of Biogeography 40, 12151224.10.1111/jbi.12100Google Scholar
Pasenko, M.R., and Schubert, B.W. (2004). Mammuthus jeffersonii (Proboscidea, Mammalia) from Northern Illinois. PaleoBios 24, 1924.Google Scholar
Pearson, R.G., and Dawson, T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecology and Biogeography 12, 361371.10.1046/j.1466-822X.2003.00042.xGoogle Scholar
Peteet, D.M., Vogel, J.S., Nelson, D.E., Southon, J.R., Nickmann, R.J., and Heusser, L.E. (1990). Younger Dryas climatic reversal in northeastern USA? AMS ages for an old problem. Quaternary Research 33, 219230.10.1016/0033-5894(90)90020-LGoogle Scholar
Peteet, D.M., Daniels, R.A., Heusser, L.E., Vogel, J.S., Southon, J.R., and Nelson, D.E. (1993). Late-glacial pollen, macrofossils and fish remains in northeastern U.S.A.. Quaternary Science Reviews 12, 597612.10.1016/0277-3791(93)90002-4Google Scholar
Peteet, D.M., Beh, M., Orr, C., Kurdyla, D., Nichols, J., and Guilderson, T. (2012). Delayed deglaciation or extreme Arctic conditions 21–16 cal. kyr at southeastern Laurentide Ice Sheet margin?. Geophysical Research Letters 39, L1170610.1029/2012GL051884Google Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., and van der Plicht, J. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.10.2458/azu_js_rc.55.16947Google Scholar
Ricklefs, R.E. (2008). Disintegration of the ecological community. The American Naturalist 172, 741750.10.1086/593002Google Scholar
Ridge, J.C. (2003). The last deglaciation of the northeastern United States: a combined varve, paleomagnetic, and calibrated 14C chronology.Cremeens, D.L., Hart, J.P. Geoarchaeology of Landscapes in the Glaciated Northeast, New York State Museum Bulletin 497. University of the State of New York, State Education Dept, Albany, NY.1545.Google Scholar
Robinson, G.S., and Burney, D.A. (2008). The Hyde Park mastodon and palynological clues to megafaunal extinction. Paleontographica Americana 61, 291299.Google Scholar
Robinson, G.S., Pigott Burney, L., and Burney, D.A. (2005). Landscape paleoecology and megafaunal extinction in southeastern New York State. Ecological Monographs 75, 295315.10.1890/03-4064Google Scholar
Saunders, J.J., Grimm, E.C., Widga, C.C., Campbell, G.D., Curry, B.B., Grimley, D.A., Hanson, P.R., McCullum, J.P., Oliver, J.S., and Treworgy, J.D. (2010). Paradigms and proboscideans in the southern Great Lakes region, USA. Quaternary International 217, 175187.10.1016/j.quaint.2009.07.031Google Scholar
Schwert, D.P. (1992). Faunal transitions in response to an Ice Age: the Late Wisconsinan record of Coleoptera in the north-central United States. The Coleopterists Bulletin 46, 6894.Google Scholar
Shank, C.C., Wilkinson, P.F., and Penner, D.F. (1978). Diet of Peary Caribou, Banks Island, N. W. T.. Arctic 31, 125132.Google Scholar
Steadman, D.W., Craig, L.J., and Bopp, J. (1993a). )Diddly Cave: a new late Quaternary vertebrate fauna from New York State. Current Research in the Pleistocene 9, 110112.Google Scholar
Steadman, D.W., Craig, L.J., and Engel, T. (1993b). )Late Pleistocene and Holocene vertebrates from Joralemon’s (Fish Club) Cave, Albany County, New York. The Bulletin of the New York State Archaeological Association 105, 915.Google Scholar
Steadman, D.W., Stafford, T.W. Jr., and Funk, R.E. (1997). Nonassociation of Paleoindians with AMS-dated Late Pleistocene mammals from the Dutchess Quarry Caves, New York. Quaternary Research 47, 105116.10.1006/qres.1996.1860Google Scholar
Strong, D.R., Simberloff, D., Abele, L.G., and Thistle, A.B. (1984). Ecological Communities: Conceptual Issues and the Evidence. Princeton University Press, Google Scholar
Stuart, A.J., Sulerzhitsky, L.D., Orlova, L.A., Kuzmin, Y.V., and Lister, A.M. (2002). The latest woolly mammoths (Mammuthusprimigenius Blumenbach) in Europe and Asia: a review of the current evidence. Quaternary Science Reviews 21, 15591569.10.1016/S0277-3791(02)00026-4Google Scholar
Stuiver, M., and Reimer, P. (1993). Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, 215230.Google Scholar
Surovell, T.A., Pelton, S.R., Anderson-Sprecher, R., and Myers, A.D. (2015). Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. PNAS 201504020, 10.1073/pnas.1504020112Google Scholar
Svenning, J.-C., and Skov, F. (2004). Limited filling of the potential range in European tree species. Ecology Letters 7, 565573.10.1111/j.1461-0248.2004.00614.xGoogle Scholar
Teale, C.L., and Miller, N.G. (2012). Mastodon herbivory in mid-latitude late-Pleistocene boreal forests of eastern North America. Quaternary Research 78, 7281.10.1016/j.yqres.2012.04.002Google Scholar
Thibault, K.M., and Brown, J.H. (2008). Impact of an extreme climatic event on community assembly. PNAS 105, 34103415.10.1073/pnas.0712282105Google Scholar
Thomas, D.C., Edmonds, E.J., and Brown, W.K. (1996). The diet of woodland caribou populations in west-central Alberta. Rangifer 16, 337342.10.7557/2.16.4.1275Google Scholar
Thompson, L.M., McIntosh, G.C., and Allmon, W.D. (2008). Discoveries of the American mastodon (Mammutamericanum) in New York State: 1922–2007. Paleontographica Americana 61, 2541.Google Scholar
Vartanyan, S.L., Arskanov, K.A., Tertychnaya, T.V., and Chernov, S.B. (1995). Radiocarbon dating evidence for mammoths on Wrangel Island, Arctic Ocean, until 2000 BC. Radiocarbon 37, 16.Google Scholar
Villavicencio, N.A., Lindsey, E.L., Martin, F.M., Borrero, L.A., Moreno, P.I., Marshall, C.R., and Barnosky, A.D. (2015). Combination of humans, climate, and vegetation change triggered Late Quaternary megafauna extinction in the Última Esperanza region, southern Patagonia, Chile. Ecography10.1111/ecog.01606( n/a–n/a.)Google Scholar
Webb, T. (1987). The appearance and disappearance of major vegetational assemblages: long-term vegetational dynamics in eastern North America. Vegetatio 69, 177187.10.1007/BF00038699Google Scholar
Weiher, E., and Keddy, P. (2001). Ecological Assembly Rules: Perspectives, Advances. Cambridge University Press, Retreats.Google Scholar
Weiher, E., Freund, D., Bunton, T., Stefanski, A., Lee, T., and Bentivenga, S. (2011). Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society of London B: Biological Sciences 366, 24032413.10.1098/rstb.2011.0056Google Scholar
White, R.G., and Trudell, J. (1980). Habitat preference and forage consumption by reindeer and caribou near Atkasook, Alaska. Arctic and Alpine Research 12, 511529.10.2307/1550498Google Scholar
Whithead, D.R., and Jackson, S.T. (1990). The regional vegetational history of the High Peaks, New York State Museum Bulletin 478. University of the State of New York, State Education Dept, Albany, NY.Google Scholar
Williams, J.W., Shuman, B.N., and Webb, T. (2001). Dissimilarity analyses of Late-Quaternary vegetation and climate in eastern North America. Ecology 82, 33463362.10.1890/0012-9658(2001)082[3346:DAOLQV]2.0.CO;2Google Scholar
Williams, J.W., Shuman, B.N., Webb, T., Bartlein, P.J., and Leduc, P.L. (2004). Late-Quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecological Monographs 74, 309334.10.1890/02-4045Google Scholar
Wright, H.E. (1964). Aspects of the early postglacial forest succession in the Great Lakes region. Ecology 45, 439448.10.2307/1936097Google Scholar
Wroe, S., Field, J.H., Archer, M., Grayson, D.K., Price, G.J., Louys, J., Faith, J.T., Webb, G.E., Davidson, I., and Mooney, S.D. (2013). Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia–New Guinea). PNAS 110, 87778781.10.1073/pnas.1302698110Google Scholar
Yansa, C.H., and Adams, K.M. (2012). Mastodons and mammoths in the Great Lakes Region, USA and Canada: new insights into their diets as they neared extinction. Geography Compass 6, 175188.10.1111/j.1749-8198.2012.00483.xGoogle Scholar
Young, R.A., and Burr, G.S. (2006). Middle Wisconsin glaciation in the Genesee Valley, NY: a stratigraphic record contemporaneous with Heinrich Event, H4. Geomorphology 75, 226247.10.1016/j.geomorph.2004.11.023Google Scholar
Young, T.P., Chase, J.M., and Huddleston, R.T. (2001). Community succession and assembly: comparing, contrasting and combining paradigms in the context of ecological restoration. Ecological Restoration 19, 518.Google Scholar
Supplementary material: File

Feranec and Kozlowski supplementary material

Supplementary Information

Download Feranec and Kozlowski supplementary material(File)
File 6.7 MB