Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T18:50:42.994Z Has data issue: false hasContentIssue false

Global glacier dynamics during 100 ka Pleistocene glacial cycles

Published online by Cambridge University Press:  04 June 2018

Philip D. Hughes*
Affiliation:
Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
Philip L. Gibbard
Affiliation:
Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge CB2 1ER, United Kingdom
*
*Corresponding author at: Department of Geography, School of Environment, Education and Development, University of Manchester, Oxford Road, Manchester M13 9PL, UK. E-mail address: philip.hughes@manchester.ac.uk (P. D. Hughes).

Abstract

Ice volume during the last ten 100 ka glacial cycles was driven by solar radiation flux in the Northern Hemisphere. Early minima in solar radiation combined with critical levels of atmospheric CO2 drove initial glacier expansion. Glacial cycles between Marine Isotope Stage (MIS) 24 and MIS 13, whilst at 100 ka periodicity, were irregular in amplitude, and the shift to the largest amplitude 100 ka glacial cycles occurred after MIS 16. Mountain glaciers in the mid-latitudes and Asia reached their maximum extents early in glacial cycles, then retreated as global climate became increasingly arid. In contrast, larger ice masses close to maritime moisture sources continued to build up and dominated global glacial maxima reflected in marine isotope and sea-level records. The effect of this pattern of glaciation on the state of the global atmosphere is evident in dust records from Antarctic ice cores, where pronounced double peaks in dust flux occur in all of the last eight glacial cycles. Glacier growth is strongly modulated by variations in solar radiation, especially in glacial inceptions. This external control accounts for ~50–60% of ice volume change through glacial cycles. Internal global glacier–climate dynamics account for the rest of the change, which is controlled by the geographic distributions of glaciers.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arnold, N. S., van Andel, T. H., Valen, V., 2002. Extent and dynamics of the Scandinavian ice sheet during Oxygen Isotope Stage 3 (65,000–25,000 yr BP). Quaternary Research 57, 3848.CrossRefGoogle Scholar
Arrhenius, G., 1952. Sediment Cores from the East Pacific. Reports of the Swedish Deep-Sea Expedition 1947–1948. Vol. 5. 227 pp. Swedish Natural Science Research Council, Stockholm.Google Scholar
Astakhov, V., 2004. Pleistocene ice limits in Russian northern lowlands. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 1, Europe. Elsevier, Amsterdam, pp. 309319.CrossRefGoogle Scholar
Astakhov, V., 2018. Late Quaternary glaciation of the northern Urals: a review and new observations. Boreas 47, 379–389. doi: 10.1111/bor.12278.CrossRefGoogle Scholar
Astakhov, V., Shkatova, V., Zastrozhnov, A., Chuyko, M., 2016. Glaciomorphological map of the Russian Federation. Quaternary International 420, 414.CrossRefGoogle Scholar
Augustinus, P., Fink, D., Fletcher, M.-S., Thomas, I., 2017. Re-assessment of the mid to late Quaternary glacial and environmental history of the Boco Plain, western Tasmania. Quaternary Science Reviews 160, 3144.CrossRefGoogle Scholar
Augustinus, P.C., Macphail, M.K., 1997. Early Pleistocene stratigraphy and timing of the Bulgobac Glaciation, western Tasmania, Australia. Palaeogeography, Palaeoecology, Palaeoecology 128, 253267.CrossRefGoogle Scholar
Ayalon, A., Bar-Matthews, M., Kaufman, A., 2002. Climatic conditions during marine isotope stage 6 in the eastern Mediterranean from the isotopic composition of speleothems of Soreq Cave. Geology 30, 303306.2.0.CO;2>CrossRefGoogle Scholar
Bahr, A., Kaboth, S., Hodell, D., Zeeden, C., Fiebig, J., Friedrich, O., 2018. Oceanic heat pulses fueling moisture transport towards continental Europe across the mid-Pleistocene transition. Quaternary Science Reviews 179, 4858.CrossRefGoogle Scholar
Bahr, D.B., Pfeffer, W.T., Sassolas, C., Meier, M.F., 1998. Response time of glaciers as a function of size and mass balance. Journal of Geophysical Research 103, 97779782.CrossRefGoogle Scholar
Bard, E., Delaygue, G., Rostek, F., Antonioli, F., Silenzi, S., Schrag, D.P., 2002. Hydrological conditions over the western Mediterranean basin during the deposition of the cold sapropel 6 (ca. 175 kyr BP). Earth and Planetary Science Letters 202, 481494.CrossRefGoogle Scholar
Barendregt, R.W., Duk-Rodkin, A., 2011. Chronology and extent of Late Cenozoic ice sheets in North America: a magnetostratigraphical approach. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology. Developments in Quaternary Science, Vol. 15. Elsevier, Amsterdam, pp. 419427.CrossRefGoogle Scholar
Beets, D.J., Meijer, T., Beets, C.J., Cleveringa, P., Laban, C., van der Spek, A.J.F., 2005. Evidence for a Middle Pleistocene glaciation of MIS 8 age in the southern North Sea. Quaternary International 133–134, 719.CrossRefGoogle Scholar
Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T.F., Fischer, H., Kipfstuhl, S., Chappellaz, J., 2015. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 42, 542–549. doi: 10.1002/2014GL061957.CrossRefGoogle Scholar
Berger, A., 1992. Orbital Variations and Insolation Database. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #92-007. NOAA/NGDC Paleoclimatology Program, Boulder, CO. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/insolation/ (accessed May 4, 2018).Google Scholar
Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297317.CrossRefGoogle Scholar
Bierman, P.R., Marsella, K.A., Patterson, C., Thompson Davis, P., Caffee, M., 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.CrossRefGoogle Scholar
Blockley, S.P.E., Lane, C.S., Hardiman, M., Rasmussen, S., Seierstad, I., Turney, C.S., Bronk Ramsey, C., 2012. Synchronisation of palaeoenvironmental records over the last 60,000 years, an extended INTIMATE group protocol. Quaternary Science Reviews 36, 210.CrossRefGoogle Scholar
Blunier, T., Chappellaz, J., Schwander, J., Dällenbach, A., Stauffer, B., Stocker, T.F., Raynaud, D., et al., 1998. Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394, 739743.CrossRefGoogle Scholar
Braithwaite, R.J., Raper, S.C.B., 2007. Glaciological conditions in seven contrasting regions estimated with the degree-day model. Journal of Glaciology 46, 297302.CrossRefGoogle Scholar
Braun, D., 2011. The glaciation of Pennsylvania, USA. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 521530.CrossRefGoogle Scholar
Broecker, W.S., van Donk, J., 1970. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Reviews of Geophysics 8, 169198.CrossRefGoogle Scholar
Capron, E., Vázquez Riveiros, N., He, F., Jacobel, A., Zhang, X., 2016. Spatial pattern and temporal evolution of glacial terminations of the last 800 ka. Past Global Changes Magazine 25, 118.CrossRefGoogle Scholar
Cheng, H., Edwards, L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., Wang, X., 2009. Ice Age terminations. Science 326, 248252.CrossRefGoogle ScholarPubMed
Clark, C.D., Gibbard, P.L., Rose, J., 2004. Pleistocene glacial limits in England, Scotland and Wales. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology, Part 1. Europe. Amsterdam, Elsevier, pp. 4782.CrossRefGoogle Scholar
Clark, P.U., Pollard, D., 1999. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13(1), 119.CrossRefGoogle Scholar
Cohen, K.M., Gibbard, P.L., 2011. Global Chronostratigraphical Correlation Table for the last 2.7 Million Years. Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy), Cambridge, UK. https://quaternary.stratigraphy.org/correlation/POSTERSTRAT_v2011.pdf.20110222-162627 (accessed May 4, 2018).Google Scholar
Colleoni, F., Wekerle, C., Näslund, J-O., Brandefelt, J., Masina, S., 2016. Constraint on the penultimate glacial maximum Northern Hemisphere ice topography (~140 kyrs BP). Quaternary Science Reviews 137, 97112.CrossRefGoogle Scholar
Crucifix, M., 2012. Oscillators and relaxation phenomena in Pleistocene climate theory. Philosophical Transactions of the Royal Society A 370, 11401165.CrossRefGoogle ScholarPubMed
Curry, B.B., Grimly, D.A., McKay, E.D. III, 2011. Quaternary glaciations in Illinois. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 467488.CrossRefGoogle Scholar
Denton, G.H., Hughes, T.J., 1981. The Last Great Ice Sheets. Wiley, New York.Google Scholar
De Schepper, S., Gibbard, P.L., Salzmann, U., Ehlers, J., 2014. A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Science Reviews 135, 83102.CrossRefGoogle Scholar
Duk-Rodkin, A., Barendregt, R.W., 2011. Stratigraphical record of glacials/interglacials in northwest Canada. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology. Vol. 15, Developments in Quaternary Science,Elsevier, Amsterdam, pp. 661699.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L., 2007. The extent and chronology of Cenozoic global glaciation. Quaternary International 164–165, 620.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L., 2008. Extent and chronology of Quaternary glaciation. Episodes 31, 211218.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L. (Eds.), 2004. Quaternary Glaciations – Extent and Chronology. Developments in Quaternary Science Volume 2, Parts I, II, and III, Elsevier, Amsterdam.Google Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D., 2011a. Introduction. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science, Elsevier, Amsterdam, pp. 114.CrossRefGoogle Scholar
Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), 2011b. Quaternary Glaciations—Extent and Chronology: A Closer Look Vol. 15, Developments in Quaternary Science, Elsevier, Amsterdam.Google Scholar
Ehlers, J., Grube, A., Stephan, H-J., Wansa, S., 2011c. Pleistocene glaciations of north Germany—new results. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 149162.CrossRefGoogle Scholar
Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, N., Hodell, D., Piotrowski, A.M., 2012. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704709.CrossRefGoogle ScholarPubMed
[EPICA] European Project for Ice Coring in Antarctica Community Members. 2006. One-to-one coupling of glacial climate vari-ability in Greenland and Antarctica. Nature 444, 195198.CrossRefGoogle Scholar
Fairbridge, R.W., 1972. Climatology of a glacial cycle. Quaternary Research 2, 283302.CrossRefGoogle Scholar
Fink, D., Augustinus, P., 2010. Glacial history of Tasmania from mid-Pleistocene to the Last Glacial Maximum—new challenges and new ideas for hemispheric glacial climate correlations. In: International Glaciological Conference (VICC 2010)—“Ice and Climate Change: A View from the South,” Centro de Estudios Científicos (CECS), Valdivia, Chile, February 1–3, 2010. http://apo.ansto.gov.au/dspace/handle/10238/2881 (accessed May 4, 2018).Google Scholar
Fletcher, W., Sánchez-Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu Nebout, N., Huntley, B., Lawson, I., et al., P.C., 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 28392864.CrossRefGoogle Scholar
Fletcher, W.J., Müller, U.C., Koutsodendris, A., Christanis, K., Pross, J., 2013. A centennial-scale record of vegetation and climate variability from 312 to 240 ka (Marine Isotope Stages 9c–a, 8 and 7e) from Tenaghi Philippon, NE Greece. Quaternary Science Reviews 78, 108125.CrossRefGoogle Scholar
Ganopolski, A., Winkelmann, R., Schellnhuber, H.J., 2016. Critical insolation–CO2 relation for diagnosing past and future glacial inception. Nature 529, 200203.CrossRefGoogle ScholarPubMed
Gibbard, P.L., 2013. Climatostratigraphy. In: The Encyclopedia of Quaternary Science. 2nd ed, Vol. 4. Elsevier, Amsterdam, the Netherlands, pp. 222–226.CrossRefGoogle Scholar
Gibbard, P.L., West, R.G., 2000. Quaternary chronostratigraphy: the terminology of terrestrial sequences. Boreas 29, 329336.CrossRefGoogle Scholar
Gibbard, P.L., West, R.G., Boreham, S., Rolfe, C.J., 2011. Late Middle Pleistocene ice-marginal sedimentation in East Anglia, England. Boreas 41, 319336.CrossRefGoogle Scholar
Gibbard, P.L., West, R.G., Hughes, P.D., 2018. Pleistocene glaciation of Fenland, England, and its implications for evolution of the region. Royal Society Open Science 4, 170736. http://dx.doi.org/10.1098/rsos.170736.CrossRefGoogle Scholar
Gillespie, A., Molnar, P., 1995. Asynchronous maximum advances of mountain and continental glaciers. Reviews of Geophysics 33, 311364.CrossRefGoogle Scholar
Giraudi, C., Bodrato, G., Ricci Lucchi, M., Cipriani, N., Villa, I.M., Giaccio, B., Zuppi, G.M., 2011. The Middle and late Pleistocene glaciations in the Campo Felice basin (Central Apennines, Italy). Quaternary Research 75, 219230.CrossRefGoogle Scholar
Giraudi, C., Giaccio, B., 2017. Middle Pleistocene glaciations in the Apennines, Italy: new chronological data and preservation of the glacial record. Geological Society of London Special Publication 433, 161178.CrossRefGoogle Scholar
Hao, Q., Wang, L., Oldfield, F., Guo, Z., 2015. Extra-long interglacial during MIS 15–13 arising from limited extent of Arctic ice sheets in glacial MIS 14. Scientific Reports 5, 12103.CrossRefGoogle ScholarPubMed
Harzhauser, M., Daxner-Höck, G., López-Guerrero, P., Maridet, O., Oliver, A., Piller, W.E., Richoz, S., Erbajeva, M.A., Neubauer, T.A., Göhlich, U.B., 2016. Stepwise onset of the Icehouse world and its impact on Oilgo-Miocene Centra Asian mammals. Scientific Reports 6, 36169. doi: 10.1038/srep36169.CrossRefGoogle Scholar
Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194, 11211132.CrossRefGoogle ScholarPubMed
Head, M.J., Gibbard, P.L., 2005. Early–Middle Pleistocene transitions: an overview and recommendations for the defining boundary. Geological Society of London Special Publication 247, 118.CrossRefGoogle Scholar
Head, M.J., Gibbard, P.L., 2015. Formal subdivision of the Quaternary system/period: past, present, and future. Quaternary International 383, 435.CrossRefGoogle Scholar
Hodell, D.A., Channell, J.E.T., Curtis, J.H., Romero, O.E., Röhl, U., 2008. Onset of “Hudson Strait” Heinrich events in the Eastern North Atlantic at the end of the Middle Pleistocene Transition (~640 ka). Paleoceanography 23, PA4218.CrossRefGoogle Scholar
Hönisch, B., Hemming, N.G., Archer, D., Siddall, M., McManus, J.F., 2009. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324, 15511554.CrossRefGoogle ScholarPubMed
Hughes, P.D., 2008. Response of a Montenegro glacier to extreme summer heatwaves in 2003 and 2007. Geografiska Annaler 90A, 259267.CrossRefGoogle Scholar
Hughes, P.D., 2009. Twenty-first century glaciers in the Prokletije mountains, Albania. Arctic, Antarctic and Alpine Research 41, 455459.CrossRefGoogle Scholar
Hughes, P.D., Braithwaite, R.J., 2008. Application of a degree-day model to reconstruct Pleistocene glacial climates. Quaternary Research 69, 110116.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., 2015. A stratigraphical basis for the Last Glacial Maximum (LGM). Quaternary International 383, 174185.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., Ehlers, J., 2013. Timing of glaciation during the last glacial cycle: evaluating the meaning and significance of the “Last Glacial Maximum” (LGM). Earth Science Reviews 125, 171198.CrossRefGoogle Scholar
Hughes, P.D., Gibbard, P.L., Woodward, J.C., 2005. Quaternary glacial records in mountain regions: a formal stratigraphical approach. Episodes 28, 8592.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., Gibbard, P.L., Macklin, M.G., Gilmour, M.A., Smith, G.R., 2006. The glacial history of the Pindus Mountains, Greece. Journal of Geology 114, 413434.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., 2011. The glacial history of the Dinaric Alps, Montenegro. Quaternary Science Reviews 30, 33933412.CrossRefGoogle Scholar
Hughes, P.D., Woodward, J.C., van Calsteren, P.C., Thomas, L.E., Adamson, K., 2010. Pleistocene ice caps on the coastal mountains of the Adriatic Sea: palaeoclimatic and wider palaeoenvironmental implications. Quaternary Science Reviews 29, 36903708.CrossRefGoogle Scholar
Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., et al., 1993. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8, 699735.CrossRefGoogle Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine 18O record. In: Berger, A., Imbrie, J., Hays, G., Kukla, G., Saltzman, B. (Eds.), Milankovitch and Climate. Reidel, Dordrecht, Netherlands, pp. 269306.Google Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al., 2007a. Orbital and millennial Antarctic climate variability over the last 800,000 years. Science 317, 793796.CrossRefGoogle Scholar
Jouzel, J., Stievenard, M., Johnsen, S.J., Landais, A., Masson-Delmotte, V., Sveinbjornsdottir, A., Vimeux, F., von Grafenstein, U., White, J.W.C., 2007b. The GRIP deuterium-excess record. Quaternary Science Reviews 26, 117.CrossRefGoogle Scholar
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al., 2007c. EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates. IGBP PAGES/World Data Center for Paleoclimatology. Data Contribution Series #2007-091. NOAA/NCDC Paleoclimatology Program, Boulder, CO. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/epica_domec/edc3deuttemp2007.txt (accessed May 4, 2018).Google Scholar
Joy, K., Fink, D., Storey, B., De Pascale, G.P., Quigley, M., Fujioka, T., 2017. Cosmogenic evidence for limited local LGM glacial expansion, Denton Hills, Antarctica. Quaternary Science Reviews 178, 89101.CrossRefGoogle Scholar
Kukla, G., An, Z. S., Melice, J. L., Gavin, J., Xiao, J. L., 1994. Magnetic susceptibility record of Chinese Loess. Transactions of the Royal Society of Edinburgh, Earth Science 81, 263288.CrossRefGoogle Scholar
Laban, C., van der Meer, J.M., 2011. Pleistocene glaciation in the Netherlands. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 247260.CrossRefGoogle Scholar
Labeyrie, L.D., Duplessy, J.C., Blanc, P.L., 1987. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327, 477482.CrossRefGoogle Scholar
Lamb, R.M., Huuse, M., Stewart, M., 2016. Early Quaternary sedimentary processes and palaeoenvironments in the central North Sea. Journal of Quaternary Science 32, 127144.CrossRefGoogle Scholar
Lambert, F., Bigler, M., Steffensen, J.P., Hutterli, M., Fischer, H., 2012. Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Climate of the Past 8, 609623.CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stockler, T.F., Ruth, U., Steffensen, J.P., Maggi, V., 2008. Dust–climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616619.CrossRefGoogle Scholar
Lang, N., Wolff, E.W., 2011. Interglacial and glacial variability from the last 800 ka in marine, ice and terrestrial archives. Climate of the Past 7, 361380.CrossRefGoogle Scholar
Larsen, E., Kjær, K.H., Demidov, I.N., Funder, S., Grøsfjeld, K., Houmark-Nielsen, M., Jensen, M., Linge, H., Lyså, A., 2006. Late Pleistocene glacial and lake history of northwestern Russia. Boreas 35, 394424.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A. C. M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428, 261285.CrossRefGoogle Scholar
Lilly, K., Fink, D., Fabel, D., Lambeck, K., 2010. Pleistocene dynamics of the interior East Antarctic ice sheet. Geology 38, 703706.CrossRefGoogle Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003.Google Scholar
Lowe, J.J., Rasmussen, S.O., Björck, S., Hoek, W.Z., Steffensen, J.P., Walker, M.J.C., Yu, Z., INTIMATE Group, 2008. Synchronisation of palaeoenvironmental events in the North Atlantic region during the Last Termination: a revised protocol recommended by the INTIMATE Group. Quaternary Science Reviews 27, 617.CrossRefGoogle Scholar
Lüthi, D., Floch, M. Le, Bereiter, B., Blunier, T., Barnola, J-M., Raynaud, D., Jouzel, J., Fischer, H., Kawamura, K., Stocker, T.F., 2008. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379381.CrossRefGoogle ScholarPubMed
MacAyeal, D., 1993. Binge/purge oscillations of the Laurentide ice sheet as a cause of the North Atlantic’s Heinrich events. Paleoceanography 8, 775784.CrossRefGoogle Scholar
Margari, V., Skinner, L.C., Hodell, D.A., Martrat, B., Toucanne, S., Grimalt, J.O., Gibbard, P.L., Lunkka, J.P., Tzedakis, P.C., 2014. Land-ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology 42, 183186.CrossRefGoogle Scholar
Margari, V., Skinner, L.C., Tzedakis, P.C., Ganopolski, A., Vautravers, M., Shackleton, N.J., 2010. The nature of millennia-scale climate variability during the past two glacial periods. Nature Geoscience 3, 127131.CrossRefGoogle Scholar
Markle, B.R., Steig, E.J., Buizert, C., Schoenemann, S.W., Bitz, C.M., Fudge, T.J., Redro, J.B., et al., 2017. Global atmospheric teleconnections during Dansgaard-Oeschger events. Nature Geoscience 10, 3640.CrossRefGoogle Scholar
Marks, L., 2011. Quaternary glaciations in Poland. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 299304.CrossRefGoogle Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high resolution 0–300,000 year chronostratigraphy. Quaternary Research 27, 129.CrossRefGoogle Scholar
McManus, J.F., Oppo, D.W., Cullen, J.L., 1999. A 0.5 million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971975.CrossRefGoogle ScholarPubMed
Meyer, V.D., Barr, I.D., 2017. Linking glacier extent and summer temperature in NE Russia—implications for precipitation during the global Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 470, 7280.CrossRefGoogle Scholar
Misawa, K., Kohno, M., Tomiyama, T., Noguchi, T., Nakamura, T., Nagao, K., Mikouchi, T., Nishiizumi, K., 2010. Two extraterrestrial dust horizons found in the Dome Fuji ice core, East Antarctica. Earth and Planetary Science Letters 289, 287297.CrossRefGoogle Scholar
Mudelsee, M., Schulz, M., 1997. The Mid-Pleistocene transition: onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth and Planetary Science Letters 151, 117123.CrossRefGoogle Scholar
Muttoni, G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D., 2003. Onset of major Pleistocene glaciations in the Alps. Geology 31, 989992.CrossRefGoogle Scholar
Narcisi, B., Petit, J.R., Engrand, C., 2007. First discovery of meteoritic events in deep Antarctic (EPICA-Dome C) ice cores. Geophysical Research Letters 34, L15502.CrossRefGoogle Scholar
National Oceanic and Atmospheric Administration, 2018. Antarctic Ice Cores Revised 800KYr CO2 Data. http://ncdc.noaa.gov/paleo/study/17975 (accessed May 4, 2018).Google Scholar
Ohmura, A., Kasser, P., Funk, M., 1992. Climate at the equilibrium line of glaciers. Journal of Glaciology 38, 397411.CrossRefGoogle Scholar
Owen, L.A., Chen, J., Hedrick, K.A., Caffee, M.W., Robinson, A.C., Schoenbohm, M., Yuan, Z., Imrecke, D.B., Liu, J., 2012. Quaternary glaciation of the Tashgurkan Valley, southeast Pamir. Quaternary Science Reviews 47, 5672.CrossRefGoogle Scholar
Owen, L.A., Dortch, J.M., 2014. Nature and timing of Quaternary glaciation in the Himalaya–Tibetan orogeny. Quaternary Science Reviews 88, 1454.CrossRefGoogle Scholar
Owen, L.A., Robinson, R., Benn, D.I., Finkel, R.C., Davis, N.K., Yi, C., Putkonen, J., Li, D., Murray, A.S., 2009. Quaternary glaciation of Mount Everest. Quaternary Science Reviews 28, 14121433.CrossRefGoogle Scholar
Owen, L.A., Yi, C., Finkel, R.C., Davis, N., 2010. Quaternary glaciation of Gurla Mandata (Naimon’anyi). Quaternary Science Reviews 29, 18171830.CrossRefGoogle Scholar
Paillard, D., 2001. Glacial cycles: towards a new paradigm. Reviews of Geophysics 39, 325346.CrossRefGoogle Scholar
Pena, L.D., Goldstein, S.L., 2014. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition. Paleoceanography 345, 318322.Google ScholarPubMed
Rabassa, J., Coronato, A.M., Salemme, M., 2005. Chronology of the Last Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences 20, 81103.CrossRefGoogle Scholar
Rabineau, M., Berné, S., Olivet, J.-L., Aslanian, D., Guillocheau, F., Joseph, P., 2006. Paleo sea-levels reconsidered from direct observations of paleoshoreline position during glacial maxima (for the last 500,000 yr). Earth and Planetary Science Letters 252, 119137.CrossRefGoogle Scholar
Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S., 2015. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94106.CrossRefGoogle Scholar
Railsback, L.B., Xiao, H., Liang, F., Akers, P.D., Brook, G.A., Dennis, W.M., Lanier, T.E., Tan, M., Cheng, H., Edwards, R.L., 2014. A stalagmite record of abrupt climate change and possible westerlies-derived atmospheric precipitation during the Penultimate Glacial Maximum in northern China. Palaeogeography, Palaeoclimatology, Palaeoecology 393, 3044.CrossRefGoogle Scholar
Raymo, M.E., 1997. The timing of major climate terminations. Paleoceanography and Paleoclimatology 12, 577585.CrossRefGoogle Scholar
Regattieri, E., Zanchetta, G., Drysdale, R.N., Isola, I., Hellstrom, J.C., Roncioni, A., 2014. A continuous stable isotope record from the penultimate glacial maximum to the Last Interglacial (159–121 ka) from Tana Che Urla Cave (Apuan Alps, central Italy). Quaternary Research 82, 450461.CrossRefGoogle Scholar
Rial, J.A., 1999. Pacemaking the ice ages by frequency modulation of Earth’s orbital eccentricity. Science 285, 564568.CrossRefGoogle ScholarPubMed
Ridgwell., A., Watson, A.J., Raymo, M.E., 1999. Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin? Paleoceanography 14, 437440.CrossRefGoogle Scholar
Rodrigues, T., Voelker, A.H.L., Grimalt, J.O., Abrantes, F., Naughton, F., 2011. Iberian Margin sea surface temperature during MIS 15 to 9 (380–300 ka): glacial suborbital variability versus interglacial stability. Paleoceanography 26, PA1204.CrossRefGoogle Scholar
Rohling, E.J., Hibbert, F.D., Williams, F.H., Grant, K.M., Marino, G., Foster, G.L., Hennekam, R., et al., 2017. Differences between the last two glacial maxima and implications for ice-sheet? 18O, and sea-level reconstructions. Quaternary Science Reviews 176, 128.CrossRefGoogle Scholar
Roskosch, J., Winsermann, J., Polom, U., Brandes, C., Tsukamoto, S., Weitkamp, A., Batholomäus, W.A., Henningsen, D., Frechen, M., 2014. Luminescence dating of ice-marginal deposits in northern Germany: evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). Boreas 44, 103126.CrossRefGoogle Scholar
Roucoux, K.H., Tzedakis, P.C., Lawson, I.T., Margari, V., 2011. Vegetation history of the penultimate glacial period (Marine Isotope Stage 6) at Ioannina, north-west Greece. Journal of Quaternary Science 26, 616626.CrossRefGoogle Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989. Pleistocene evolution of Northern Hemisphere climate. Paleoceanography 4, 353412.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Bishop, M.P., Bush, A., Clendon, P., Copland, P., Finkel, R.C., Kamp, U., Shroder, J.F., 2007. Quaternary glacial history of the Central Karakoram. Quaternary Science Reviews 26, 33843405.CrossRefGoogle Scholar
Seong, Y.B., Owen, L.A., Yi, C., Finkel, R.C., Schoenbohm, L., 2009. Geomorphology of anomalously high glaciated mountains at the northwestern end of Tibet: Muztag Ata and Kongur Shan. Geomorphology 103, 227250.CrossRefGoogle Scholar
Shackleton, N.J., 1967. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 1517.CrossRefGoogle Scholar
Shackleton, N.J., 1987. Oxygen isotopes, ice volume and sea level. Quaternary Science Reviews 6, 183190.CrossRefGoogle Scholar
Shackleton, N.J., 2000. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289, 18971902.CrossRefGoogle ScholarPubMed
Shackleton, N.J., Chapman, M., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2002. The classic marine isotope substage 5e. Quaternary Research 58, 1416.CrossRefGoogle Scholar
Shackleton, N.J., Hall, M.A., Vincent, E., 2000. Phase relationships between millennial scale events 64,000–24,000 years ago. Paleoceanography 15, 565569.CrossRefGoogle Scholar
Shackleton, N.J., Sánchez-Goñi, M.F., Pailler, D., Lancelot, Y., 2003. Marine Isotope Substage 5e and the Eemain Interglacial. Global and Planetary Change 36, 151155.CrossRefGoogle Scholar
Shakun, J.D, 2017. Modest global-scale cooling despite extensive early Pleistocene ice sheets. Quaternary Science Reviews 165, 2530.CrossRefGoogle Scholar
Shakun, J. D., Lea, D.W., Lisiecki, L.E., Raymo, M.E., 2015. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth and Planetary Science Letters 426, 5868.CrossRefGoogle Scholar
Scher, H.D., Martin, E.E., 2006. Timing and climatic consequences of the opening of the Drake Passage. Science 312, 428430.CrossRefGoogle ScholarPubMed
Skinner, L.C., Shackleton, N.J., 2005. An Atlantic lead over Pacific deep-water change across termination I: implications for the application of the marine isotope stage stratigraphy. Quaternary Science Reviews 24, 571580.CrossRefGoogle Scholar
Stenni, B., Buiron, D., Frezzoti, M., Albani, S., Barbante, C., Bard, E., Barnola, J. M., et al., 2011. Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation. Nature Geoscience 4, 4649.CrossRefGoogle Scholar
Stirling, C.H., Esat, T.M., Lambeck, K., McCulloch, M.T., 1998. Timing and duration of the Last Interglacial: evidence for a restricted interval of widespread coral reef growth. Earth and Planetary Science Letters 160, 745762.CrossRefGoogle Scholar
Stocker, T. F., Johnsen, S. J., 2003. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1087.CrossRefGoogle Scholar
Subcommission on Quaternary Stratigraphy, 2017. Regional Divisions (accessed February 27, 2018). https://quaternary.stratigraphy.org/regionaldivisions.Google Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I., Dowdeswell, J.A., Funder, S. , S., Gataullin, V., et al., 2004. Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
Syverson, K.M., Colgan, P.M., 2011. The Quaternary of Wisconsin: an updated review of stratigraphy, glacial history and landforms. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 537552.CrossRefGoogle Scholar
Toucanne, S., Zaragosi, S., Bourillet, J.F., Cremer, M., Eynaud, F., Van Vliet-Lanoë, B., Penaud, A., et al., 2009. Timing of massive “Fleuve manche” discharges over the last 350 kyr: insights into the European ice-sheet oscillations and the European drainage network from MIS 10 to 2. Quaternary Science Reviews 28, 12381256.CrossRefGoogle Scholar
Tzedakis, P.C., Crucifix, M., Mitsui, T., Wolff, E.W., 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427432.CrossRefGoogle ScholarPubMed
Van Andel, T.H., 2002. The climate and landscape of the middle part of the Weichselian Glaciation in Europe: the Stage 3 project. Quaternary Research 57, 28.CrossRefGoogle Scholar
Van Ginneken, M., Folco, L., Perchiazzi, N., Rochette, P., Bland, P.A., 2010. Meteoritic ablation debris from the Transantarctic Mountains: evidence for a Tunguska-like impact over Antarctica ca. 480 ka ago. Earth and Planetary Science Letters 293, 104113.CrossRefGoogle Scholar
Velichko, A.A., Faustova, M.A., Gribchenko, Y.N., Pisareva, V.V., Sudakova, N.G., 2004. Glaciations of the East European Plain—distribution and chronology. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary Glaciations—Extent and Chronology. Part 1, Europe. Elsevier, Amsterdam, pp. 337354.CrossRefGoogle Scholar
Vorren, T.O., Landvik, J.Y., Andreassen, K., Laberg, J.S., 2011. Glacial history of the Barents Sea region. In: Ehlers, J., Gibbard, P.L., Hughes, P.D. (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look. Vol. 15, Developments in Quaternary Science. Elsevier, Amsterdam, pp. 362372.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J.C., McManus, J.F., Lambeck, K., Balbon, E., Labracherie, M., 2002. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21, 295305.CrossRefGoogle Scholar
Walker, M.J.C., Johnsen, S., Rasmussen, S.O., Popp, T., Steffensen, J.-P., Gibbard, P.L, Hoek, W., et al., 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. Journal of Quaternary Science 24, 317.CrossRefGoogle Scholar
White, T.S., Bridgland, D.R., Westaway, R., Straw, A., 2017. Evidence for a late Middle Pleistocene glaciation of the British margin of the southern North Sea. Journal of Quaternary Science 32, 261275.CrossRefGoogle Scholar
Zhou, S.Z., Wang, X.L., Wang, J., Xu, L.B., 2006. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai–Tibetan Plateau. Quaternary International 154–155, 4451.CrossRefGoogle Scholar