Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T17:41:06.123Z Has data issue: false hasContentIssue false

Structure and distribution of modules in extracellular proteins

Published online by Cambridge University Press:  17 March 2009

Peer Bork
Affiliation:
Max-Delbrück-Center for Molecular Medicine, 13125 Berlin-Buch, Germany and European Molecular Biology Laboratory, 69117 Heidelberg, Germany
A. Kristina Downing
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
Bruno Kieffer
Affiliation:
Groupe de Cancerogenese, IBMC de CNRS, 75084 Strasbourg, France
Iain D. Campbell
Affiliation:
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK

Extract

It has become standard practice to compare new amino-acid and nucleotide sequences with existing ones in the rapidly growing sequence databases. This has led to the recurring identification of certain sequence patterns, usually corresponding to less than 300 amino-acids in length. Many of these identifiable sequence regions have been shown to fold up to form a ‘domain’ structure; they are often called protein ‘modules’ (see definitions below). Proteins that contain such modules are widely distributed in biology, but they are particularly common in extracellular proteins.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antuch, W., Berndt, K. D., Chavez, M. A., Delfin, J. & Wüthrich, K. (1993). The NMR solution structure of a kunitz-type proteinase inhibitor from the sea anemone stichodactyla helianthus. Eur. J. Biochem. 212, 675684.CrossRefGoogle ScholarPubMed
Banner, D. W., D'Arcy, A., Janes, W., Gentz, R., Schoenfeld, H.-J., Broger, C., Loetscher, H. & Lesslauer, W. (1993). Crystal structure of the soluble human 55 Kd TNF receptor-human TNF-β complex: Implications for TNF receptor activation. Cell 73, 431445.CrossRefGoogle ScholarPubMed
Barclay, A. N., Birkeland, M. L., Brown, M. H., Beyers, A. D., Davis, S. J., Somoza, C. & Williams, A. F. (1993). The Leukocyte Anitgen. Academic Press.Google Scholar
Barlow, P. N., Steinkasserer, A., Norman, D. G., Kieffer, B., Wiles, A. P., Sim, R. B. & Campbell, I. D. (1993). Solution structure of a pair of complement modules by Nuclear Magnetic Resonance. J. Mol. Biol. 232, 268284.CrossRefGoogle ScholarPubMed
Baron, M., Norman, D. & Campbell, I. D. (1991). Protein modules. TIBS 16, 1317.Google ScholarPubMed
Bazan, J. (1993). Emerging families of cytokines and receptors. Curr. Biol. 3, 603606.CrossRefGoogle ScholarPubMed
Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J. & Turk, V. (1988). The 2·0 Å X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7, 25932599.CrossRefGoogle ScholarPubMed
Bode, W., Epp, O., Huber, R., Laskowski, M. J. & Ardelt, W. (1985). The crystal and molecular structure of the third domain of silver pheasant ovomucoid (OMSVP3). Eur. J. Biochem. 147, 387395.CrossRefGoogle ScholarPubMed
Bodian, D. L., Jones, E. Y., Harlos, K., Stuart, D. I. & Davis, S. J. (1994). Crystal structure of the extracellular region of the human cell adhesion molecule CD2 at 2.5 Å resolution. Structure 2, 755766.CrossRefGoogle ScholarPubMed
Bork, P. & Bairoch, A. (1995). Extracellular protein modules. TIBS 02 (Supplement).Google Scholar
Bork, P. & Doolittle, R. F. (1992). Proposed acquisition of an animal domain by bacteria. Proc. Natl. Acad. Sci. USA 89, 88908994.CrossRefGoogle ScholarPubMed
Bork, P., Holm, L. & Sander, C. (1994). The Immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 242, 309320.Google ScholarPubMed
Bork, P. & Margolis, B. (1995). A phosphotyrosine interaction domain. Cell 80, 693694.CrossRefGoogle ScholarPubMed
Brady, R. L., Dodson, E. J., Lange, G., Davis, S. J., Williams, A. F. & Barclay, A. N. (1993). Crystal structure of domains 3 and 4 of rat CD4: relation to the NH2-terminal domains. Science 260, 979983.CrossRefGoogle Scholar
Campbell, I. D. & Bork, P. (1993). Epidermal growth factor-like modules. Curr. Opin. Struct. Biol. 3, 385392.CrossRefGoogle Scholar
Campbell, I. D. & Downing, A. K. (1994). Building protein structure and function from modular units. Tibtech 12, 168172.CrossRefGoogle ScholarPubMed
Chacko, S., Silverton, E., Kammorgan, L., Smithgill, S., Cohen, G. & Davies, D. (1995)- Structure of an antibody lysozyme complex unexpected effect of a conservative mutation. J. Mol. Biol. 245, 261274.CrossRefGoogle ScholarPubMed
Constantine, K. L., Madrid, M., B´nyai, L., Trexler, M., Patthy, L. & Llin´s, M. (1992). Refined solution structure and ligand-binding properties of PDC-109 domain b; a collagen-binding type II domain. J. Mol. Biol. 223, 281298.CrossRefGoogle Scholar
Creighton, T. E. & Charles, I. G. (1987). Biosynthesis, processing, and evolution of bovine pancreatic trypsin-inhibitor. Cold Spring Harbor Symposia on Quantitative Biology 52, 511519.CrossRefGoogle ScholarPubMed
Daly, N., Scanlon, M. J., Djordjevic, J. T., Kroon, P. A. & Smith, R. (1995). 3- dimensional structure of a cysteine-rich repeat from the low-density-lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92, 63346338.CrossRefGoogle Scholar
Daopin, S., Piez, K. A., Ogawa, Y. & Davies, D. R. (1994). Crystal structure of transforming growth factor-β2: An unusual fold for the superfamily. Science 257, 369373.CrossRefGoogle Scholar
De Vos, A. M., Ultsch, M. & Kossiakoff, A. A. (1992). Human growth hormone and the extracellular domain of its receptor: Crystal structure of the complex. Science 255, 306312.CrossRefGoogle ScholarPubMed
De Vos, A. M., Ultsch, M. H., Kelly, R. F., Padmanabhan, K., Tullinsky, A., Westbrook, M. L. & Kossiakoff, A. A. (1992). Crystal structure of the kringle 2 domain of tissue plasminogen activator at 2·4 Å resolution. Biochem. 31, 270279.CrossRefGoogle ScholarPubMed
Doolittle, R. F. (1995). The multiplicity of domains in proteins. Ann. Rev. Biochem. 64, 287314CrossRefGoogle ScholarPubMed
Downing, A. K., Driscoll, P. C, Harvey, T. S., Dudgeon, T. J., Smith, B. O., Baron, M. & Campbell, I. D. (1992). The solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 2H NMR. J. Mol. Biol. 225, 821833.CrossRefGoogle Scholar
Drickamer, K. (1992). Engineering galactose-binding activity into a C-type mannosebinding protein. Nature 360, 183186.CrossRefGoogle ScholarPubMed
Faber, H. R., Groom, C. R., Baker, H. M., Morgan, W. T., Smith, A. & Baker, E. N. (1995). 1·8-Å crystal-structure of the C-terminal domain of rabbit serum hemopexin. Structure 3, 551559.CrossRefGoogle Scholar
Fletcher, C. M., Harrison, R. A., Lachmann, P. J. & Neuhaus, D. (1994). Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure 2, 185199.CrossRefGoogle ScholarPubMed
Gajhede, M., Petersen, T. N., Henriksen, A., Petersen, J. F. W., Dauter, Z., Wilson, K. S. & Thim, L. (1993). Pancreatic spasmolytic polypeptide: first three-dimensional structure of a member of the mammalian trefoil family of peptides. Structure 1, 253262.CrossRefGoogle ScholarPubMed
Glucksmannkuis, M. A., Tayber, O., et al. (1995). Polycystic kidney-disease - the complete structure of the PKD1 gene and its protein. Cell 81, 289298.Google Scholar
Hansen, A. P., Petros, A. M., Meadows, R. P., Nettesheim, D. G., Mazar, A. P., Olejniczak, E. T., Xu, R. X., Pederson, T. M., Henkin, J. & Fesik, S. W. (1994). Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry 33, 48474864.CrossRefGoogle ScholarPubMed
Harlos, K., Martin, D. M. A., O'Brien, D. P.Jones, E. Y., Stuart, D. I., Polikarpov, I., Miller, A., Tuddenham, E. G. D. & Boys, C. W. G. (1994). Crystal structure of the extracellular region of human tissue factor. Nature 370, 662666.CrossRefGoogle ScholarPubMed
Harpaz, Y. & Chothia, C. (1994). Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238, 528539.CrossRefGoogle ScholarPubMed
Hommel, U., Harvey, T. S., Driscoll, P. C. & Campbell, I. D. (1992). Human epidermal growth factor. High resolution solution structure and comparison with human TGF-α. J. Mol. Biol. 227, 271282.CrossRefGoogle Scholar
Huber, A. H., Wang, Y. E., Bieber, A. J. & Bjorkman, P. J. (1994). Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2·0 Å. Neuron 12, 717731CrossRefGoogle Scholar
Hugli, T. E. (1981). The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Critical reviews in immunology Ed. M. Z. Atassi. CRC Press. 321366.Google Scholar
Isaacs, N. W. (1995). Cystine knots. Curr. Opin. Struct. Biol. 5, 391395.CrossRefGoogle ScholarPubMed
Jones, E. Y. (1993). The immunoglobulin superfamily. Curr. Opin. Struct. Biol. 3, 846852.CrossRefGoogle Scholar
Jones, E. Y., Davis, S. J., Williams, A. F., Harlos, K. & Stuart, D. I. (1992). Crystal structure at 2·8 Å resolution of a soluble form of the cell adhesion molecule CD2. Nature 360, 232239.CrossRefGoogle ScholarPubMed
Jones, E. Y., Harlos, K., Bottomley, M. J., Robinson, R. C., Driscoll, P. C., Edwards, R. M., Clements, J. M., Dudgeon, T. J. & Stuart, D. I. (1995). Crystal structure of an integrin-binding fragment of vascular cell adhesion molecule-1 at 1·8 Å resolution. Nature 373, 539544.CrossRefGoogle ScholarPubMed
Kieffer, B., Driscoll, P. C., Campbell, I. D., Willis, A. C., Van Der Merwe, P. A. & Davies, S. J. (1994). Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins. Biochemistry 33, 44714482.CrossRefGoogle ScholarPubMed
Kobe, B. & Deisenhofer, J. (1994). The leucine-rich repeat: a versatile binding motif. TIBS 19, 415421.Google ScholarPubMed
Kobe, B. & Deisenhofer, J. (1995). A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183186.CrossRefGoogle ScholarPubMed
Kraulis, P. J. (1991). Molscript: A program to produce both detailed and schematic plots of protein structure. J. Appl. Cryst. 24, 946950.CrossRefGoogle Scholar
Kreis, T. & Vale, R., EDS. (1993). Guidebook to the extracellular matrix and adhesion proteins. Oxford University Press.Google Scholar
Labeit, S. & Kolmerer, B. (1995). Titins, giant proteins in charge of muscle ultrastructure and elasticity. Science 270, 293296.CrossRefGoogle ScholarPubMed
Lapthorn, A. J., Harris, D. C., Littlejohn, A., Lustbader, J. W., Canfield, R. E., Machin, K. J., Morgan, F. J. & Issacs, N. W. (1994). Crystal-structure of human chorionic-gonadotropin. Nature 369, 455461.CrossRefGoogle ScholarPubMed
Lascombe, M.-B., Alzari, P. M., Poljak, R. J. & Nisonoff, A. (1992). Three-dimensional structure of two crystal forms of FabR19·9 from a monoclonal antiarsonate antibody. Proc. Natl. Acad. Sci. USA 89, 94299433.CrossRefGoogle ScholarPubMed
Leahy, D. J., Aukhil, I. & Erickson, H. P. (1996). 2·0 ˚A crystal structure of a four domain segment of human fibronectin encompassing the RGD loop and synergy region Cell 84, 155164.Google Scholar
Lee, J.-O., Rieu, P., Arnaout, A. & Liddington, R. (1995). Crystal structure of the A domain from the α subunit of integrin CR3 (CD11b/CD18). Cell 80, 631638.CrossRefGoogle ScholarPubMed
Li, J., Brick, P., Ohare, M. C., Skarzynski, T., Lloyd, L. F., Curry, V. A., Clark, I. M., Bigg, H. F., Hazleman, B. L., Cawston, T. E. & Blow, D. M. (1995). Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, 4-bladed β-propeller. Structure 3, 541549.CrossRefGoogle Scholar
Liepinsh, E., Berndt, K. D., Sillard, R., Mutt, V. & Otting, G. (1994). Solution structure and dynamics of PEC-60, a protein of the Kazal type inhibitor family, determined by nuclear magnetic resonance spectroscopy. J. Mol. Biol. 239, 137153.CrossRefGoogle ScholarPubMed
Little, E., Bork, P. & Doolittle, R. F. (1994). Tracing the spread of fibronectin type- III domains in bacterial glycohydrolases. J. Mol. Evol. 39, 631643.CrossRefGoogle ScholarPubMed
Lowell, C. A., Klickstein, L. B., Carter, R. H., Mitchell, J. A., Fearon, D. T. & Ahearn, J. M. (1989). Mapping of the Epstein-Barr virus and C3dg binding sites to a common domain on complement receptor type 2. J. Exp. Med. 170, 19311946.CrossRefGoogle ScholarPubMed
Main, A. L., Baron, M., Harvey, T. S., Boyd, J. & Campbell, I. D. (1992). The three dimensional structure of the tenth type III module of fibronectin: an insight into RGD mediated interactions. Cell 71, 671678.CrossRefGoogle ScholarPubMed
Mallett, S. & Barclay, A. N. (1991). A new superfamily of cell surface proteins related to the nerve growth factor receptor. Immunology Today 12, 220227.CrossRefGoogle Scholar
Martinez, S. E., Huang, D., Szczepaniak, A., Cramer, W. A. & Smith, J. L. (1994). Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2, 95105.CrossRefGoogle ScholarPubMed
McDonald, N. Q. & Hendrickson, W. A. (1993). A structural superfamily of growth factors containing a cystine knot motif. Cell 73, 421424.CrossRefGoogle ScholarPubMed
McDonald, N. Q., Lapatto, R., Murrayrust, J., Gunning, J., Wlodawer, A. & Blundell, T. L. (1991). New-protein fold revealed by a 2·3-Å resolution crystalstructure of nerve growth-factor. Nature 354, 411414.CrossRefGoogle Scholar
Meitinger, T., Meindl, A., Bork, P., Rost, B., Sander, C, Hassemann, M. & Murken, J. (1993). Molecular modelling of the norrie disease protein predicts a cystine knot growth-factor tertiary structure. Nature Genetics 5, 376380.CrossRefGoogle ScholarPubMed
Miller, Y. A., Ultsch, M. H., Kelley, R. F. & De Vos, A. M. (1994). Structure of the extracellular domain of human tissue factor: location of the factor Vila binding site. Biochemistry 33, 1086410870.CrossRefGoogle Scholar
Oefner, C., Darcy, A., Winkler, F. K., Eggimann, B. & Hosang, M. (1992). Crystalstructure of human platelet-derived growth factor-BB. EMBO J. 11, 39213926.CrossRefGoogle Scholar
Overduin, M., Harver, T. S., Bagby, S., Tong, K. I., Yau, P., Takeichi, M. & Ikura, M. (1995). Solution structure of the epithelial cadherin domain responsible for selective cell-adhesion. Science 267, 386389.CrossRefGoogle ScholarPubMed
Patthy, L. (1991). Exons - original building blocks of proteins. Bioessays 13, 187192.CrossRefGoogle ScholarPubMed
Patthy, L. (1993). Modular design of proteases of coagulation, fibrinolysis, and complement activation: implications for protein engineering and structure-function studies. Methods. Enzymol. 222, 1021.CrossRefGoogle ScholarPubMed
Pawson, T. (1995). Protein modules and signalling networks. Nature 373, 573580.CrossRefGoogle ScholarPubMed
Poljak, R. J., Amzel, L. M., Chen, B. L., Phizackerley, R. P. & Saul, F. (1974). The three-dimensional structure of the Fab» fragment of a human myeloma immunoglobulin at 2·o-Åresolution. Proc. Nat. Acad. Sci. USA 71, 34403444.CrossRefGoogle Scholar
Potts, J. R. & Campbell, I. D. (1994). Fibronection structure and assembly. Curr. Opin. Cell Biol. 6, 648655.CrossRefGoogle Scholar
Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G. G. & Stuart, D. (1995). The structure of a Ca2+ binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131141.CrossRefGoogle ScholarPubMed
Ryu, S. E., Kwong, P. D., Truneh, A., Porter, T. G., Arthos, J., Rosenberg, M., Dai, X., Xuong, N., Axel, R., Sweet, R. W. & Hendrickson, W. A. (1990). Crystal structure of HIV-binding recombinant fragment of human CD4. Nature 348, 419426.CrossRefGoogle ScholarPubMed
Saul, F. A. & Poljak, R. J. (1992). Crystal structure of human immunoglobulin fragment fab new refined at 2·0 Å resolution. PROTEINS 14, 363371.CrossRefGoogle ScholarPubMed
Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M. S., Grübel, G., Legrand, J.-F., Als-Nielsen, J., Colman, D. R. & Hendrickson, W. A. (1995). Structural basis of cell-cell adhesion by cadherins. Nature 374, 327337.CrossRefGoogle ScholarPubMed
Smith, B. O., Downing, A. K., Driscoll, P. C., Dudgeon, T. J. & Campbell, I. D. (1995). The solution structure and backbone dynamics of the fibronectin type 1 and epidermal growth factor-like pair of modules of tissue-type plasminogen activator. Structure 3, 823833.CrossRefGoogle Scholar
Smith, C. A., Farrah, T. & Goodwin, R. G. (1994). The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell 76, 959962.CrossRefGoogle ScholarPubMed
Somers, W., Ultsch, M., De Vos, A. M. & Kossiakoff, A. A. (1994). X-ray structure of a growth hormone-prolactinreceptor complex. Nature 372, 478481.CrossRefGoogle Scholar
Soriano-Garcia, M., Padmanabhan, K., De Vos, A. M. & Tulinsky, A. (1992). The Ca++ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 31, 25542566.CrossRefGoogle ScholarPubMed
Sudhof, T. C., Goldstein, J. L., Brown, M. S. & Russell, D. W. (1985). The LDL receptor gene—a mosaic of exons shared with different proteins. Science 228, 815822.CrossRefGoogle ScholarPubMed
Sunnerhagen, M., Forsen, S., Hoffren, A. M., Drakenberg, T., Teleman, O. & Stenflo, J. (1995). Structure of the Ca2+ -free GLA domain sheds light on membranebinding of blood-coagulation proteins. Nature Struct. Biol. 2, 504509.CrossRefGoogle Scholar
Sutton, R. B., Davletov, B. A., Berghuis, A. M., Südhof, T. C. & Sprang, S. R. (1995). Structure of the first C2 domain of synaptotagmin 1: a novel Ca2+/ phospholipid-binding fold. Cell 80, 929938.CrossRefGoogle ScholarPubMed
Tormo, J., Stadler, E., Skern, T., Auer, H., Kanzler, O., Betzel, C., Blaas, D. & Fita, I. (1992). Three-dimensional structure of the Fab fragment of a neutralizing antibody to human rhinovirus serotype 2. Protein Science 1, 11541161.CrossRefGoogle ScholarPubMed
Tulinsky, (1991). The structures of domains of blood proteins. Thromb. & Haemo. 66, 1631.Google ScholarPubMed
Tulip, W. R., Varghese, J. N., Laver, W. G., Webster, R. G. & Colman, P. M. (1992). Refined crystal structure of the influenza virus N9 neuraminidase-NC41 fab complex. J. Mol. Biol. 227, 122148.CrossRefGoogle ScholarPubMed
Valcarce, C., Holmgren, A. & Stenflo, J. (1994). Calcium-dependent interaction between gamma-carboxyglumtamic acid-containing and N-terminal epidermal growth factor-like modules in factor-X. J. Biol. Chem. 269, 2601126016.CrossRefGoogle ScholarPubMed
Van Zonneveld, A. J., Veerman, H. & Pannekoek, H. (1986). Autonomous function of structural domains on human tissue-type plasminogen activator. Proc. Natl. Acad. Sci. 83, 46704674.CrossRefGoogle ScholarPubMed
Venstrom, K. A. & Reichardt, L. F. (1993). Extracellular matrix 2: role of extracellular matrix molecules and their receptors in the nervous system. FASEB J. 7, 9971003.CrossRefGoogle ScholarPubMed
Wagner, G. & Wyss, D. F. (1994). Cell surface adhesion receptors. Curr. Opin. Struct. Biol. 4, 841851.CrossRefGoogle ScholarPubMed
Walter, M. R., Windsor, W. T., Nagabhushan, T. L., Lundell, D. J., Lunn, C. A., Zauodny, P. J. & Narula, S. K. (1995). Crystal structure of a complex between interferon-γ and its soluble high-affinity receptor. Nature 376, 230235.CrossRefGoogle ScholarPubMed
Wang, J., Yan, Y., Garret, T. P. J., Liu, J., Rodgers, D. W., Garlick, R. L., Tarr, G. E., Hussain, Y., Reinherz, E. L. & Harrison, S. C. (1990). Atomic structure of a fragment of CD4 containing two immunoglobulin-like domains. Nature 348, 411418.CrossRefGoogle ScholarPubMed
Ward, C. W., Hoyne, P. A. & Flegg, R. H. (1995). Insulin and epidermal growth factor receptors contain the cysteine repeat motif found in the tumour necrosis factor receptor. PROTEINS 22, 141153.CrossRefGoogle Scholar
Weis, W. I., Drickamer, K. & Hendrickson, W. A. (1992). Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360, 127134.CrossRefGoogle ScholarPubMed
Williams, A. F. & Barclay, A. N. (1988). The immunoglobulin superfamily – domains for cell surface recognition. Ann. Rev. Immunol. 6, 381405.CrossRefGoogle ScholarPubMed
Williams, M. J., Phan, I., Harvey, T. S., Rostagno, A., Gold, L. I. & Campbell, I. D. (1994). Solution structure of a pair of fibronectin type I modules with fibrin binding activity. J. Mol. Biol. 235, 13021311.CrossRefGoogle ScholarPubMed
Williamson, M. P. & Madison, V. S. (1990). Three-dimensional structure of porcine Csa(desArg) from 1 H nuclear magnetic resonance data. Biochemistry 29, 28952905.CrossRefGoogle Scholar
Wilson, I. A. & Stanfield, R. L. (1994). Antibody-antigen interactions: new structures and new conformational changes. Cur. Opin. in Struct. Biol. 4, 857867.CrossRefGoogle ScholarPubMed
Wu, H., Lustbader, J. W., Liu, Y., Canfield, R. E. & Hendrickson, W. A. (1994). Structure of human chorionic-conadotropin at 2·6-angstrom resolution from MAD analysis of the selenomethionyl protein. Structure 2, 545558.CrossRefGoogle ScholarPubMed