Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:44:41.882Z Has data issue: false hasContentIssue false

Physical theories of biological co-ordination

Published online by Cambridge University Press:  17 March 2009

H. H. Pattee
Affiliation:
W. W. Hansen Laboratories of Physics, Stanford University, Stanford, California 94305

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Review Article
Copyright
Copyright © Cambridge University Press 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ballantine, L. E. (1970). The statistical interpretation of quantum mechanics. Rev. mod. Phys. 42, 358.CrossRefGoogle Scholar
Bellman, R. & Kalaba, R. (1964). Selected Papers on Mathematical Trends in Control Theory. New York: Dover Publications.Google Scholar
Bénard, H. (1901). Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur en regime permanent. Annls chim. Phys. (7e série) 23, 62.Google Scholar
Born, M. (1964). Natural Philosophy of Cause and Chance, p. 47. New York: Dover.Google Scholar
Burgers, J. M. (1963). On the emergence of patterns of order. Bull. Am. math. Soc. 69, 1.CrossRefGoogle Scholar
Caskey, C. T. (1970). The universal RNA genetic code. Q. Rev. Biophys. 3, 295.CrossRefGoogle ScholarPubMed
Chandra, K. (1938). Instability of fluids heated from below. Proc. R. Soc. A 164, 231.Google Scholar
Crick, F. H. C. (1958). The origin of the genetic code. J. molec. Biol. 38, 367.Google Scholar
Crick, F. H. C. (1968). Of Molecules and Man. Seattle: University of Washington Press.Google Scholar
Delbrück, M. (1970). A physicist's renewed look at biology: twenty years later. Science, N.Y. 168, 1312.Google Scholar
Golden, S. (1969). Quantum Statistical Foundations of Chemical Kinetics. Oxford University Press.Google Scholar
Haldane, J. B. S. (1965). Data needed for a blueprint of the first organism. The Origins of Prebiological Systems (ed. Fox, S.), p. II. New York: Academic Press.Google Scholar
Harris, Z. (1968). Mathematical Structures of Language. New York: Interscience (John Wiley).Google Scholar
Jukes, T. H. (1966). Molecules and Evolution. New York: Columbia Univ. Press.Google Scholar
Kendrew, J. C. (1967). Review of Phage and Origins of Molecular Biology, ed. Cairns, J., Stent, G. and Watson, J.. Cold Springs Harbor Laboratory of Quantitative Biol. Scient. Am. 216, 141.Google Scholar
Lanczos, C. (1949). The Variational Principles of Mechanics. Toronto: University of Toronto Press.Google Scholar
Levins, R. (1971). The limits of complexity. Biological Hierarchies: Their Origin and Dynamics, ed. Pattee, H.. New York: Gordon and Breach.Google Scholar
Lewontin, R. C. (1969). The meaning of stability. Diversity and Stability in Ecological Systems. Brookhaven Symposia on Biology, no. 22. New York.Google Scholar
Maxwell, J. C. (1868). On governors. Proc. R. Soc. 16, 270.Google Scholar
Michie, D. (1970). Future for integrated cognitive systems. Nature, Lond. 228, 717.CrossRefGoogle ScholarPubMed
Morowitz, H. J. (1968). Energy Flow in Biology. New York and London: Academic Press.Google Scholar
Orgel, L. E. (1968). Evolution of the genetic apparatus. J. Molec. Biol. 38, 381.Google Scholar
Pattee, H. H. (1967). Quantum mechanics, heredity and the origin of life. J. theoret. Biol. 17, 410.Google Scholar
Pattee, H. H. (1969). How does a molecule become a message? Devi Biol., Suppl. 3, 1.Google Scholar
Pattee, H. H. (1970). The problem of biological hierarchy. Towards a Theoretical Biology, vol. 3 (ed. Waddington, C. H.), p. 117. Edinburgh University Press.Google Scholar
Pattee, H. H. (1971 a). Can life explain quantum mechanics? Quantum Theory and Beyond (ed. Bastin, T.), p. 307. Cambridge University Press.Google Scholar
Pattee, H. H. (1971 b). The physical basis and limits of hierarchical control. In Biological Hierarchies: Their Origin and Dynamics (ed. Pattee, H. H.), p. 161. New York: Gordon and Breach.Google Scholar
Pattee, H. H. (1971 c). The nature of hierarchical controls in living matter. Textbook of Mathematical Biology, ed. Rosen, R.. New York: Academic Press.Google Scholar
Pattee, H. H. (1971 d). The recognition of description and function in chemical reaction networks. Chemical Evolution and the Origin of Life, ed. Buvet, R. and Ponnamperuma, C.. Amsterdam: North-Holland.Google Scholar
Platt, J. R. (1961). Properties of large molecules that go beyond the properties of their chemical sub-groups. J. theoret. Biol. 1, 342.Google Scholar
Poincaré, H. (1957). Méthodes nouvelles de la mécanique céleste. New York: Dover Publications.Google Scholar
Prigogine, I., Lefever, R., Goldbetter, A. & HerschkowitZ-Kauffman, M. (1969). Symmetry breaking instabilities in biological systems. Nature, Lond. 223, 913.Google Scholar
Sherrington, C. (1953). Man On His Nature, 2nd ed., p. 80. New York: Doubleday Anchor Books.Google Scholar
Stent, G. (1968). That was the molecular biology that was. Science, N. Y. 160, 390.Google Scholar
Thom, R. (1968). Une théorie dynamique de la morphogenèse. In Towards a Theoretical Biology, vol. 1 (ed. Waddington, C. H.), p. 152. Edinburgh University Press.Google Scholar
Thom, R. (1970). Topological models in biology. Towards a Theoretical Biology vol. 3 (ed. Waddington, C. H.), p. 88. Edinburgh University Press.Google Scholar
Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37.Google Scholar
Watson, J. D. (1965). The Molecular Biology of the Gene, p. 67. New York: Benjamin.Google Scholar
Whittaker, E. T. (1944). A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. New York: Dover Publications.Google Scholar
Wigner, E. P. (1967). Symmetries and Reflections, p. 176. Bloomington and London: Indiana University Press.Google Scholar
Woese, C. R. (1967). The Genetic Code. New York: Harper and Row.Google Scholar