Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:12:08.387Z Has data issue: false hasContentIssue false

Cryo-electron microscopy of vitrified specimens

Published online by Cambridge University Press:  17 March 2009

Jacques Dubochet
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Marc Adrian
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Jiin-Ju Chang
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Jean-Claude Homo
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Jean Lepault
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Alasdair W. McDowall
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG
Patrick Schultz
Affiliation:
European Molecular Biology Laboratory (EMBL), Postfach 10. 2209, D-6900 Heidelberg, FRG

Extract

Cryo-electron microscopy of vitrified specimens was just emerging as a practical method when Richard Henderson proposed that we should teach an EMBO course on the new technique. The request seemed to come too early because at that moment the method looked more like a laboratory game than a useful tool. However, during the months which ellapsed before the start of the course, several of the major difficulties associated with electron microscopy of vitrified specimens found surprisingly elegant solutions or simply became non-existent. The course could therefore take place under favourable circumstances in the summer of 1983. It was repeated the following years and cryo-electron microscopy spread rapidly. Since that time, water, which was once the arch enemy of all electronmicroscopists, became what it always was in nature – an integral part of biological matter and a beautiful substance.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.CrossRefGoogle ScholarPubMed
Amos, L. A., Henderson, R. & Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. molec. Biol. 39, 183231.CrossRefGoogle ScholarPubMed
Angell, C. A. (1983). Supercooled water. A. rev. phys. Chem. 34, 593630.CrossRefGoogle Scholar
Angell, C. A. & Choi, Y. (1986). Crystallization and vitrification in aqueous systems. J. Microsc. 141, 251261.CrossRefGoogle Scholar
Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y. (1986). An improved controlled-environment vitrification system (CEVS) for cryofixation of hydrated TEM samples. In Proc. XIth Int. Conf. Elec. Microsc., Kyoto, vol. 11 (ed. Imura, T., Maruse, S. and Suzuki, T.), pp. 367368.Google Scholar
Bernal, J. D. & Fowler, R. H. (1933). A theory of water and ionic solution with particular reference to hydrogen and hydroxyl ions. J. chem. Phys. 1, 515548.CrossRefGoogle Scholar
Bernhard, W. (1965). Ultramicrotomie à basse température. Année biol. 4, 519.Google ScholarPubMed
Berry, R. S., Rice, S. A. & Ross, J. (1980). Physical Chemistry. New York: Wiley.Google Scholar
Born, M. & Wolf, E. (1975). Principles of Optics, 5th ed.Oxford: Pergamon Press.Google Scholar
Box, H. C. (1975). Cryoprotection of irradiated specimens. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 279285. New York: Wiley.Google Scholar
Brack, C. (1981). DNA electron microscopy. Crit. Rev. Biochem. 10, 113169.CrossRefGoogle ScholarPubMed
Brüggeller, P. & Mayer, E. (1980). Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288, 569571.CrossRefGoogle Scholar
Burton, E. F. & Oliver, W. F. (1935). The crystal structure of ice at low temperature.Proc. R. Soc. Lond. A 153, 166172.CrossRefGoogle Scholar
Cantor, C. R. & Schimmel, R. P. (1980). Biophysical Chemistry, vol. 1–3. San Francisco: Freeman.Google Scholar
Chang, C.-F., Ohno, T. & Glaeser, R. M. (1985). The fatty acid monolayer technique for preparing frozen hydrated specimens. J. elec. Microsc. Techn. 2, 5965.CrossRefGoogle Scholar
Chang, J.-J., McDowall, A. W., Lepault, J., Freeman, R., Walter, C. A. & Dubochet, J. (1983). Freezing, sectioning and observation artefacts of frozen hydrated sections for electron microscopy. J. Microsc. 132, 109123.CrossRefGoogle Scholar
Chiu, W. (1982). High resolution electron microscopy of unstained hydrated protein crystals. In Electron Microscopy of Proteins, vol. 2 (ed. Harris, J. R.), pp. 233259. London: Academic Press.Google Scholar
Chiu, W. (1986). Electron microscopy of frozen, hydrated biological specimens. A. Rev. Biophys. Chem. 15, 237257.CrossRefGoogle ScholarPubMed
Christensen, A. K. (1971). Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J. Cell Biol. 51, 772804.CrossRefGoogle Scholar
Clegg, J. S. (1982). Alternative views on the role of water in cell function. In Biophysics of Water (ed. Franks, F. and Mathias, S.), pp. 365383. Chichester: Wiley.Google Scholar
Coslett, V. E. (1978). Radiation damage in the high resolution electron microscopy of biological materials: a review. J. Microsc. 113, 113129.CrossRefGoogle Scholar
Crew, A. V. (1973). Considerations of specimen damage for the transmission electron microscope, conventional versus scanning. J. molec. Biol. 80, 315325.CrossRefGoogle Scholar
Davidson, D. W. (1973). Clathrate hydrates. In Water: A Comprehensive Treatise, vol. 2, (ed. Franks, F.), pp. 115234. New York: Plenum Press.Google Scholar
Davy, J. D. & Branton, D. (1970). Subliming ice surfaces: freeze-etch electron microscopy. Science 163, 12161218.CrossRefGoogle Scholar
Dietrich, I., Formanek, H., Fox, F., Knapek, E. & Weyl, R. (1979). Reduction of radiation damage in an electron microscope with superconducting lens system. Nature 277, 380381.CrossRefGoogle Scholar
Dietrich, I., Fox, F., Heide, H. G., Knapek, E. & Weyl, R. (1978). Radiation damage due to knock-on processes on carbon foils cooled to liquid helium temperature. Ultramicroscopy 3, 185189.CrossRefGoogle ScholarPubMed
Dowell, L. G. & Rinfret, A. P. (1960). Low-temperature forms of ice as studied by X-ray diffraction. Nature 188, 11441148.CrossRefGoogle Scholar
Dubochet, J. (1975). Carbon loss during irradiation of T4 bacteriophages and E. coli bacteria in electron microscopes. J. Ultrastruct. Res. 52, 276288.CrossRefGoogle Scholar
Dubochet, J., Adrian, M., Lepault, J. & McDowall, A. W. (1985). Cryo-electron microscopy of vitrified biological specimens. Trends in Biochem. Sci. 10, 143146.CrossRefGoogle Scholar
Dubochet, J., Adrian, M., Schultz, P. & Oudet, P. (1986). Cryo-electron microscopy of vitrified SV40 minichromosomes. The liquid drop model. EMBO J. 5, 519528.CrossRefGoogle ScholarPubMed
Dubochet, J., Adrian, M., Teixeira, J., Kadiyali, R. K., Alba, C. M., Macfarlane, D. R. & Angell, C. A. (1984). Glass-forming microemulsions: vitrification of simple liquids and electron microscope probing of droplet packing modes. J. phys. Chem. 88, 67276732.CrossRefGoogle Scholar
Dubochet, J., Adrian, M. & Vogel, R. H. (1983 a). Amorphous solid water obtained by vapour condensation or by liquid cooling: a comparison. Cryo-Letters 4, 233240.Google Scholar
Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. (1982 a). Frozen aqueous suspensions. Ultramicroscopy 10, 5562.CrossRefGoogle Scholar
Dubochet, J., Groom, M. & Müller, , Neuteboom, S. (1982 b). The mounting of macromolecules for electron microscopy. In Advances in Optical and Electron Microscopy, vol. 8 (ed. Cosslett, V. E. and Barer, R.), pp. 107135. London: Academic Press.Google Scholar
Dubochet, J. & Kellenberger, E. (1972). Selective adsorption of particles to the supporting film and its consequences on particle counts in electron microscopy. Microscopica Acta 72, 119130.Google Scholar
Dubochet, J. & Lepault, J. (1984). Cryo-electron microscopy of vitrified water J. Physics 45, C7/8594.Google Scholar
Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J.-CL. (1982 c). Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219237.CrossRefGoogle Scholar
Dubochet, J. & McDowall, A. W. (1981). Vitrification of pure water for electron microscopy. J. Microsc. 124, RP3–4.CrossRefGoogle Scholar
Dubochet, J. & McDowall, A. W. (1984 a). Frozen hydrated sections. In Science of Biological Specimen Preparation, pp. 147152. Chicago: SEM Inc., AMF O'Hare.Google Scholar
Dubochet, J. & McDowall, A. W. (1984 b). Cryo-ultramicrotomy: study of ice crystals and freezing damage.In Proc. 8th Eur. Congr. Elec. Microsc., Budapest (ed. Csanady, A., Röhlich, P. and Szabo, D.), vol. 2, pp. 14071410. Budapest: Progr. Committee.Google Scholar
Dubochet, J., McDowall, A. W., Menge, B., Schmid, E. N. & Lickfeld, K. G. (1983 b). Electron microscopy of frozen-hydrated bacteria. J. Bact. 155, 381390.CrossRefGoogle ScholarPubMed
Eisenberg, D. & Crothers, D. (1979). Physical Chemistry with Applications to the Life Sciences. Menlo Park, CA.: Benjamin/Cumming.Google Scholar
Eisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water. Oxford University Press.Google Scholar
Erickson, H. P. & Klug, A. (1971). Measurement and compensation of defocusing and aberrations by Fourrier processing of electron microgrpahs. Phil. Trans. R. Soc. Lond. B 261, 105118.Google Scholar
Escaig, J. (1982 a). New instruments which facilitate rapid freezing at 83 K and 6 K. J. Microsc. 126, 221229.CrossRefGoogle Scholar
Escaig, J. (1982 a). Ultra-rapid freezing of cells and cellular material: a review of methods.In Proc. 10th Int. Congr. Elec. Microsc., Hamburg, vol. 3, pp. 169176. Frankfurt: Deutsche Ges. für Elecktronenmikroskopie, e.V.Google Scholar
Eusemann, R., Rose, H. & Dubochet, J. (1982). Electron scattering in ice and organic materials, J. Microsc. 128, 239249.CrossRefGoogle Scholar
Fahy, G. M., Macfarlane, D. R., Angell, C. A. & Meryman, H. T. (1984). Vitrification as an approach to cryo-preservation., Cryobiology 21, 407426.CrossRefGoogle Scholar
Fernandez-Moran, H. (1960). Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann. N. Y. Acad. Sci. 85, 689713.CrossRefGoogle ScholarPubMed
Fernandez–Moran, H. (1966). High-resolution electron microscopy with super-conducting lenses at liquid helium temperatures.Proc. Natn. Acad. Sci. U.S.A. 56, 801808.CrossRefGoogle Scholar
Fernandez-Moran, H. (1985). Cryo-electron microscopy and ultramicrotomy: Reminiscences and reflections. In Advances in Electronics and Electron Physics, supplement 16, pp. 167223. New York: Academic Press.Google Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. (1965). Lectures on Physics, vol. I–III. Reading, Massachusetts: Addision-Wesley.Google Scholar
Finney, J. L. (1986). The role of water perturbations in biological process. In Water and Aqueous Solutions (ed. Neilson, G. W. and Enderby, J. E.), pp. 227244. Bristol: Hilger.Google Scholar
Frank, H. S. (1970). The structure of ordinary water. Science 169, 635641.CrossRefGoogle ScholarPubMed
Franks, F. (19721982). Water: A Comprehensive Treatise, vol. 1–7 (ed. Franks, F.). New York: Plenum Press.Google Scholar
Franks, F. (1982). The properties of aqueous solutions at subzero temperatures. In Water: A Comprehensive Treatise, vol. 7 (ed. Franks, F.), pp. 215338. New York: Plenum Press.Google Scholar
Frederik, P. M., Busing, W. M. & Persson, A. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125, 167175.CrossRefGoogle ScholarPubMed
Frederik, P. M., Busing, W. M. & Persson, A. (1984). Surface defects on thin cryosections. In Scanning Electron Microscopy, vol. 1, pp. 433443. Chicago: SEM Inc., AMF O'Hare.Google Scholar
Freeman, R., Leonard, K. R. & Dubochet, J. (1980). The temperature dependence of beam damage to biological samples in the scanning transmission electron microscope (STEM).Proc. 7th. Eur. Congr. Elec. Microsc., The Haag, vol. 2 (ed. Brederoo, P. and Boom, G.), pp. 640641. Leiden: The 7th. Eur. Congr. Foundation.Google Scholar
Fujiyoshi, Y., Uyeda, N., Yamajishi, H., Morikawa, K., Mizusaki, T., Aoki, Y., Kihara, H. & Harada, Y. (1986). Biological marcromolecules observed with high resolution cryo-electron microscope.In Proc. XIth Int. Cong. Elec. Microsc., Kyoto, vol. III (ed. Imura, T., Maruse, S. and Susuki, T.), pp. 18291832. Tokyo: Jap. Soc. Elec. Microsc.Google Scholar
Fukami, A. & Adachi, K. (1965). A new method of preparation of a self-perforated micro-plastic grid and its application. J. Elec. Microsc. (Japan) 14, 112118.Google ScholarPubMed
Fukami, A., Adachi, K. & Katoh, M. (1972). Micro grid techniques (continued) and their contribution to specimen preparation techniques for high resolution work. J. Elec. Microsc. (Japan) 21, 99108.Google Scholar
Fuller, S. D. (1987). The T = 4 envelope of Sindbis virus is organized by interactions with a complementary T = 3 capsid. Cell 48, 923934.CrossRefGoogle Scholar
Fuller, S. D. & Argos, P. (1987). Is Sindbis a simple picornavirus with an evelope? EMBO J. 26, 15031511.Google Scholar
Geiger, A., Mausbach, P. & Schnitker, J. (1986). Computer simulation study of the hydrogen-bond network in metastable water. In Water and Aqueous Solutions (ed. Neilson, G. W. and Enderby, J. E.), pp. 3140. Bristol: Adam Hilger.Google Scholar
De Gennes, P. G. (1984). Comment s'étale une goutte. Pour la Science 79, 8896.Google Scholar
De Gennes, P. G. (1985). Wetting: statistics and dynamics. Rev. mod. Phys. (USA) 57, 827863.CrossRefGoogle Scholar
Ghormley, J. A. & Hochanadel, C. J. (1971). Amorphous ice: density and reflectivity. Science 171, 6264.CrossRefGoogle ScholarPubMed
Glaeser, R. M. (1971). Limitation to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466482.CrossRefGoogle ScholarPubMed
Glaeser, R. M. (1975). Radiation damage and biological electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Bearman, D. R.), p. 205. New York: Wiley.Google Scholar
Glaeser, R. M. & Taylor, K. A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112, 127138.CrossRefGoogle ScholarPubMed
Griffiths, G., McDowall, A. W., Back, R. & Dubochet, J. (1984). On the preparation of cryosections for immunocrytochemistry. J. Ultrastruct. Res. 89, 6578.CrossRefGoogle Scholar
Griffiths, G., Simons, K., Warren, G. & Tokuyasu, K. T. (1983). Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki forest virus spike glycoproteins. Meth. Enzymol. 96, 435450.Google ScholarPubMed
Gupta, B. L. & Hall, T. A. (1981). The X-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue Cell 13, 623643.CrossRefGoogle ScholarPubMed
Hahn, M. (1980). Properties of commerical films for electron microscopy. In Electron Microscopy and Molecular Dimensions (ed. Baumesiter, W. and Vogell, W.), pp. 200207. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Hall, T. A. & Gupta, B. L. (1974). Beam-induced loss of organic mass under electron microscope conditions. J. Microsc. 100, 177188.CrossRefGoogle Scholar
Handley, D. A., Alexander, J. T. & Chien, S. (1981). The design and use of a simple device for rapid quench-freezing of biological samples. J. Microsc. 121, 273282.CrossRefGoogle ScholarPubMed
v. Harreveld, A., Trubatch, J. & Steiner, J. (1974). Rapid freezing and electron microscopy for the arrest of physiological processes, J. Microsc. 100, 189198.CrossRefGoogle Scholar
Hart, R. K., Kassner, T. F. & Maurin, J. K. (1970). Contamination of surfaces during high-energy electron radiation. Phil. Mag. 21, 453467.CrossRefGoogle Scholar
Hayat, M. A. (1970). Principles and Techniques of Electron Microscopy. Biological Applications, vol. 1. London: Van Nostrand Reinhold.Google Scholar
Hayward, S. B., Grano, D. A., Glaeser, R. M. & Fisher, K. A. (1978). Molecular orientation of bacteriorhodopsin within the purple membrane of halobacterium halobium.Proc. natn. Acad. Sci. U.S.A. 75, 43204324.CrossRefGoogle Scholar
van Heel, M. & Frank, J. (1981). Use of multivariate statistics in image analysing the images of biological macromolecules. Ultramicroscopy. 6, 187194.Google ScholarPubMed
Heide, H. G. (1982 a). On the irradiation of organic samples in the vicinity of ice. Ultramicroscopy. 7, 299300.CrossRefGoogle Scholar
Heide, H. G. (1982 b). Design and operation of cold stages. Ultramicroscopy. 10, 125154.CrossRefGoogle Scholar
Heide, H. G. & Grund, S. (1974). Eine Tiefkühlkette zum Überführen von wasserhaltigen biologischen Objekten im Elektronenmikroskop. J. Ultrastruct. Res. 48, 259268.CrossRefGoogle Scholar
Heide, H. G. & Zeitler, E. (1985). The physical behaviour of solid water at low temperatures and the embedding of electron microscopical specimens. Ultramicroscopy 16, 151160.CrossRefGoogle Scholar
Heidenreich, R. R. (1964). Fundamentals of Transmission Electron Microscopy. New York: Interscience Publ.Google Scholar
Heuser, J. E., Reese, T. S., Dennis, M. J., Jan, Y., Jan, L. & Evans, L. (1979). Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81, 275300.CrossRefGoogle Scholar
Hiromi, K. (1979). Kinetics of Fast Enzyme Reactions. Theory and Practice. Kodansha Scientific Books. New York: Wiley.Google Scholar
Hobbs, P. V. (1974). Ice Physics. Oxford: Clarendon Press.Google Scholar
Homo, J.-Cl., Booy, F., Labouesse, P., Lepault, J. & Dubochet, J. (1984). Improved anticontaminator for cryo-electron microscopy with Philips EM 400. J. Microscopy 136, 337340.CrossRefGoogle Scholar
Hutchinson, T. E., Bacaner, M., Brodhurst, J. & Lilley, J. (1974). Electron microscopy of frozen biological tissue. Rev. scient. Instrum. 45, 252255.CrossRefGoogle ScholarPubMed
Huttermann, J. (1982 a). Physical mechanisms of electron interaction with organic solids. Ultramicroscopy. 10, 714.CrossRefGoogle Scholar
Huttermann, J. (1982 b). Solid-state radiation chemistry of DNA and its constituents. Ultramicroscopy. 10, 2540.CrossRefGoogle ScholarPubMed
International Expermental Study Group (1986). Cryoprotection in electron microscopy. J. Microsc. 141, 385391.CrossRefGoogle Scholar
Isaacson, M. S. (1977). Specimen damage in the electron microscope. In Principles and Techniques of Electron Microscopy. Biological Applications, vol. 7 (ed. Hayat, M. A.), pp. 178. New York: Van Nostrand Reinhold.Google Scholar
Jaffe, J. S. & Glaeser, R. M. (1984). Preparation of frozen-hydrated specimens for high resolution electron microscopy. Ultramicroscopy 13, 373378.CrossRefGoogle ScholarPubMed
Jakubowski, U. (1985). Can heat pipes solve the problems of drift and vibration of cryoholders? Ultramicroscopy. 17, 379382.CrossRefGoogle Scholar
Jeng, T.-W. & Chiu, W. (1984). Quantitative assessment of radiation damage in a thin protein crystal. J. Microsc. 136, 3544.CrossRefGoogle Scholar
Jesior, J.-Cl. (1987). How to avoid compression. II. The influence of sectioning conditions. J. Ultrastruct. Res. (In the Press.)Google Scholar
Johari, G. P. (1977). On the heat capacity, entropy and glass transition of vitreous ice. Phil. Mag. 35 (4), 10771090.CrossRefGoogle Scholar
Kellenberger, E. (1987). The response of biological macromolecules and supramolecular structures to the physics of cryo-specimen preparation. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, R. A. and Zierold, K., pp. 3563. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Kellenberger, E., Carlemalm, E. & Villiger, W. (1986 b). Physics of the preparation and observation of specimens that involve cryoprocedure. In Science of Biological Specimen Preparation (ed. Müller, M., Becker, R., Boyde, A. and Wolosewick, J.), pp. 120. Chicago: SEM Inc., AMF O'Hare.Google Scholar
Kellenberger, E., Häner, M. & Wurtz, M. (1982). The wrapping phenomenon in air-dried and negatively stained preparations. Ultramicroscopy. 9, 139150.CrossRefGoogle ScholarPubMed
Kellenberger, E. & Kistler, J. (1979). The physics of specimen preparation. In Advances in Structure Research by Diffraction Methods, vol. VIII (ed. Hoppe, W. and Mason, R.), pp. 4979. Wiesbaden: Friedr. Vieweg.Google Scholar
Kistler, J. & Kellenberger, E. (1977). Collapse phenomena in freeze-drying. J. Ultrastruct. Res. 59, 7075.CrossRefGoogle ScholarPubMed
Kleinschmidt, A. K. & Zahn, R. K. (1959). Über Deoxyribonucleinsäure-Molekulen in Protein-Mischfilmen. Z. Naturf. 14b, 770779.CrossRefGoogle Scholar
Knapek, E. & Dubochet, J. (1980). Beam damage to organic crystals is considerably reduced in cryo-electron microscopy. J. molec. Biol. 141, 147161.CrossRefGoogle Scholar
Kobayashi, K. & Sakaoku, K. (1965). Irradiation changes in organic polymers at various acceleration voltages. Lab. Investigation 14, 10971114.Google Scholar
König, H. (1943). Eine kubische Eismodification. Z. Krisṫallogr. 105, 279286.Google Scholar
Kohl, H., Rose, H. & Schnabl, H. (1981). Dose-rate effect at low temperatures in FBEM and STEM due to object-heating. Optik 58, 1124.Google Scholar
Langer, J. S. (1980). Growth of ice crystals. Rev. mod. Phys. 52, 128.CrossRefGoogle Scholar
Lamvik, M. K., Kopf, D. A. & Robertson, J. D. (1983). Radiation damage in L-valine at liquid helium temperature. Nature 301, 332334.CrossRefGoogle Scholar
Leisegang, S. (1954). Zur Erwärmung elektronenmikroskopischer Objekte bei kleinem Strahlquerschnitt.In. Proc. 3rd Int. Conf. Elec. Microsc., London, pp. 176188.Google Scholar
Lenz, S. (1954). Zur Streuung mittelschneller Elektronen in kleinste Winkel. Z. Naturf. 9 a, 185204.CrossRefGoogle Scholar
Lepault, J. (1985). Cryo-electron microscopy of helical particles TMV and T4 polyheads. J. Microsc. 140, 7380.CrossRefGoogle ScholarPubMed
Lepault, J., Booy, F. P. & Dubochet, J. (1983 a). Electron microscopy of frozen biological suspensions. J. Microsc. 129, 89102.CrossRefGoogle ScholarPubMed
Lepault, J. & Dubochet, J. (1980). Freezing, fracturing and etching artefacts in particulate suspensions. J. Ultrastruct. Res. 72, 223233.CrossRefGoogle ScholarPubMed
Lepault, J. & Dubochet, J. (1986 a). Electron microscopy of frozen hydrated specimens: preparation and characteristics. In Meth. Enzymol. 127, 719730.CrossRefGoogle ScholarPubMed
Lepault, J. & Dubochet, J. (1986 b). Beam damage and frozen-hydrated specimens.In Proc. XIth Int. Cong. Elec. Microsc., Kyoto, vol. 1 (ed. Imura, T., Maruse, S. and Suzuki, T.), pp. 2528. Tokyo: Japanese Society for Electron Microscopy.Google Scholar
Lepault, J., Dubochet, J., Baschong, W. & Kellenberger, E. (1987). Organization of double-stranded DNA in bacteriophages: a study by cryo-electron microscopy of vitrified samples. EMBO J. 6, 15071512.CrossRefGoogle ScholarPubMed
Lepault, J., Dubochet, J., Dietrich, I., Knapek, E. & Zeitler, E. (1983 b). Amendment to: Electron beam damage to organic specimens at liquid helium temperature. J. molec. Biol. 163, 511.CrossRefGoogle Scholar
Lepault, J., Freeman, R. & Dubochet, J. (1983 c). Electron beam induced ‘vitrified ice’. J. Microsc. 132, RP3–RP4.CrossRefGoogle Scholar
Lepault, J. & Leonard, K. (1985). Three-dimensional structure of unstained frozen-hydrated extended tails of bacteriophage T4. J. molec. Biol. 182, 431441.CrossRefGoogle ScholarPubMed
Lepault, J., Pattus, F. & Martin, N. (1985). Cryo-electron microscopy of artificial biological membranes. Biochim. biophys. Acta 820, 315318.CrossRefGoogle Scholar
Lepault, J. & Pitt, T. (1984). Projected structure of unstained, frozen-hydrated T-layer of Bacillus brevis. EMBO J. 3, 101105.CrossRefGoogle ScholarPubMed
Lickfeld, K. G. (1985). Ein Beitrag zur Frage welche Kräfte und Faktoren Dünnschneiden bewirken. J. Ultrastruct. Res. 93, 101115.CrossRefGoogle Scholar
Luyet, B. J. & Gehenio, P. M. (1940). Life and Death at Low Temperatures. Normandy, Missouri: Biodynamica.Google Scholar
Mackenzie, A. P. (1977). Non equilibrium freezing behaviour of aqueous systems. Phil. Trans. R. Soc. Lond. B 278, 167189.Google ScholarPubMed
Maddox, J. (1983). Snowflakes are far from simple. Nature 306, 13.CrossRefGoogle Scholar
Mandelkow, E.-M., Rapp, R. & Mandelkow, E. (1986). Microtubule structure studied by quick freezing: cryo-electron microscopy and freeze fracture. J. Microsc. 141, 361373.CrossRefGoogle Scholar
Mayer, E. (1985). Vitrification of pure liquid water. J. Microsc. 140, 315.CrossRefGoogle Scholar
Mayer, E. & Brüggeller, P. (1982). Vitrification of pure liquid water by high pressure jet freezing. Nature 298, 715718.CrossRefGoogle Scholar
Mayer, E. & Brüggeller, P. (1983). Devitrification of glassy water. Evidence for a discontinuity of states. J. phys. Chem. 87, 47444749.CrossRefGoogle Scholar
Mayer, E. & Hallbrucker, A. (1987). Cubic ice from liquid water. Nature 325, 601602.CrossRefGoogle Scholar
Mazur, P. (1970). Cryobiology: the freezing of biological systems. Science 168, 939949.CrossRefGoogle ScholarPubMed
Mazur, P. (1984). Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247, C125–C142.CrossRefGoogle ScholarPubMed
McDowall, A. W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C. A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 19.CrossRefGoogle ScholarPubMed
McDowall, A. W., Hofmann, W., Lepault, J., Adrian, M. & Dubochet, J. (1984). Cryo-electron microscopy of vitrified insect flight muscle. J. molec. Biol. 178, 105111.CrossRefGoogle ScholarPubMed
McDowall, A. W., Smith, J. M. & Dubochet, J. (1986). Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J. 5, 13951402.CrossRefGoogle ScholarPubMed
Menco, B. P. M. (1986). A survey of ultra-rapid cryofixation methods with particular emphasis on applications to freeze-fracturing, freeze-etching, and freeze-substitution. J. Elec. Microsc. Techn. 4, 177240.CrossRefGoogle Scholar
Milligan, R. & Flicker, J. (1987). J. Cell Biol. 105, 2939.CrossRefGoogle Scholar
Mishima, O., Calvert, L. D. & Whalley, E. (1984). ‘Melting ice’ I at 77K and 10Kbar: a new method of making amorphous solids. Nature 310, 393395.CrossRefGoogle Scholar
Moor, H. (1987). Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, A. and Zierold, K.). Heidelberg: Springer Verlag, (in the Press).Google Scholar
Müller, M., Meister, N. & Moor, H. (1980). Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie (Vienna) 36, 129140.Google Scholar
Müller, M. & Moor, H. (1984). Cryofixation of thick specimens by high pressure freezing. In Science of Biological Specimen Preparation, vol. 2 (ed. Revel, J.-P., Barnard, T. and Haggis, G. H.), pp. 131138. Chicago: SEM Inc., AMF O'Hare.Google Scholar
Narten, A. H. & Levy, H. A. (1969). Observed diffraction pattern and proposed models of liquid water. Science 165, 447454.CrossRefGoogle ScholarPubMed
Neilson, G. W. & Enderby, J. E. (eds.) (1986). Water and Aqueous Solutions. Bristol & Boston: A. Hilger.Google Scholar
Nittmann, J. & Stanley, H. E. (1986). Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy. Nature 321, 663668.CrossRefGoogle Scholar
Parsegian, V. A. (1975). Long range van der Waals forces. In Physical Chemistry: Enriching Topics from Colloid and Surface Science (ed. Olphen, H. V. & Mysels, K. J.), pp. 2772. Série IUPAC.Google Scholar
Parsons, D. F. (1974). Structure of wet specimens in electron microscopy. Science 186, 407414.CrossRefGoogle ScholarPubMed
Pauling, L. (1970). General Chemistry, 3rd ed. San Francisco: Freeman.Google Scholar
Plattner, H. & Bachmann, L. (1982). Cryofixation: A tool in biological ultrastructural research. Int. Rev. Cytol. 79, 237304.CrossRefGoogle ScholarPubMed
Plattner, H. & Knoll, G. (1984). Cryofixation of biological materials for electron microscopy by the methods of spray-, sandwich-, cryogen-jet- and sandwich-cryogen-jet-freezing: A comparison of techniques. In Science of Biological Specimen Preparation, vol. 2 (ed. Revel, J.-P., Barnard, T. and Haggis, G. H.), pp. 139146. Chicago: SEM Inc., AMF O'Hare.Google Scholar
Polge, C., Smith, A. U. & Parkes, A. S. (1949). Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164, 666667.CrossRefGoogle ScholarPubMed
Polian, A. & Grimsditch, M. (1984). New high pressure phase of H2O: Ice X. Phys. Rev. Lett. 52, 13121314.CrossRefGoogle Scholar
Rachel, R., Jakubowski, U., Tietz, H., Hegerl, R. & Baumeister, W. (1986). Projected structure of the surface protein of deinococcus radiodurans determined to 8 Å resolution by cryomicroscopy. Ultramicroscopy, 20, 305316.CrossRefGoogle Scholar
Rahman, A., & Stillinger, F. H. (1971). Molecular dynamics study of liquid water. J. chem. Phys. 55, 33363359.CrossRefGoogle Scholar
Rasmussen, D. H. (1982). Ice formation in aqueous systems. J. Microsc. 128, 167174.CrossRefGoogle Scholar
Rasmussen, D. H. & Mackenzie, A. P. (1973). Clustering in supercooled water. J. chem. Phys. 59, 50035013.CrossRefGoogle Scholar
Reimer, L. (1975). Review of the radiation damage problem of organic specimens in electron microscopy. In Physical Aspects of Electron Microscopy and Microbeam Analysis (ed. Siegel, B. M. and Beaman, D. R.), pp. 231245. New York: Wiley.Google Scholar
Reimer, L. (1984). Electron microscopy. Heidelberg: Springer Verlag.Google Scholar
Riehle, U. (1968). Schnellgefrieren organischer Präparate für die Elektronen-Mikroskopie. Chemie-Ing. Techn. 40, 213218.CrossRefGoogle Scholar
Riehle, U. & Hochli, M. (1973). The theory and technique of high pressure freezing. In Freeze-Etching Techniques and Applications (ed. Benedetti, E. L. and Farvard, P.), pp. 3161. Paris: Société Française de Microscopie Electronique.Google Scholar
Robards, A. W. & Sleytr, U. B. (1985). Low Temperature Methods in Biological Electron Microscopy. New York: Elsevier.Google Scholar
Roberts, I. M. (1975). Tungstein coating – a method of improving glass microtome knives for cutting ultrathin sections. J. Microsc. 103, 113119.CrossRefGoogle Scholar
Sander, C. M. (1986). Fractal growth processes. Nature 322, 789793.CrossRefGoogle Scholar
Saxton, W. O. (1978). Computer Techniques for Image Processing in Electron Microscopy. Academic Press.Google Scholar
Sceats, M. G. & Rice, S. A. (1982). Amorphous solid water and its relationship to liquid water: A random network model for water. In Water: A Comprehensive Treatise (ed. Franks, F.), pp. 83214. New York: Plenum Press.Google Scholar
Schäfer, L., Yates, A. C., Bonham, R. A. (1971). New values for the partial wave electron scattering factor for the elements 1 ≤ Z ≤ 57 and 72 ≤ Z ≤ 90 for incident electron energies of 10, 40, 70 and 100 keV. J. chem. Phys. 55, 30553056.CrossRefGoogle Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope, J. appl. Phys. 20, 2029.CrossRefGoogle Scholar
Siegel, G. (1972). The influence of very low temperature on the radiation damage of organic crystals irradiated by 100 kV electrons. Z. Naturf. A 27, 325332.CrossRefGoogle Scholar
Sitte, H., Edelmann, L. & Neumann, K. (1987). Cryofixation without pretreatment at ambient pressure. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, R. A. and Zierold, K., pp. 87113). Heidelberg: Springer Verlag.CrossRefGoogle Scholar
Sitte, H. & Neumann, K. (1983). Beitrag 1. 1. 2. In Methodensammlung der Elektronenmikroskopie (ed. Schimmel, G. and Vogell, W.), pp. 1248. Stuttgart: Wiss. Verlag GmbH.Google Scholar
Sitte, H., Neumann, K., Hässig, H., Kleber, H. & Kappl, G. (1980). FC4 cryochamber for Reichert OmU4-ultramicrotome Ultracut.In Proc. 7th Eur. Congr. Elec. Microsc., The Hague, vol. 2 (ed. Brederoo, P. and Boom, G.), pp. 540541. Leiden: Eur. Congr. Fundation.Google Scholar
Sleytr, U. B. & Robards, A. W. (1977). Plastic deformation during freezing-cleavage: a review. J. Microsc. 110, 125.CrossRefGoogle ScholarPubMed
Stanley, H. E. & Teixeira, J. (1980). Interpretation of the unusual behaviour of H2O and D2O at low temperatures: tests of a percolation model. J. chem. Phys. 73, 34043422.CrossRefGoogle Scholar
Stewart, M. & Vigers, G. (1986). Electron microscopy of frozen-hydrated biological material. Nature 319, 631636.CrossRefGoogle ScholarPubMed
Stillinger, F. H. (1980). Water revisited. Science 309, 451457.CrossRefGoogle Scholar
Stillinger, F. H. & Weber, T. A. (1984). Packing structures and transitions in liquids and solids. Science 225, 983989.CrossRefGoogle ScholarPubMed
Symons, M. C. R. (1982 a). Chemical aspects of electron beam interactions in the solid state. Ultramicroscopy 10, 1524.CrossRefGoogle Scholar
Symons, M. C. R. (1982 b). The pre knock-on concept. Ultramicroscopy 10, 4144.CrossRefGoogle Scholar
Talmon, Y. (1982). Thermal and radiation damage to frozen hydrated specimens. J. Microsc. 125, 227237.CrossRefGoogle Scholar
Talmon, Y. (1984). Radiation damage to organic inclusions. Ultramicroscopy 14, 305316.CrossRefGoogle Scholar
Talmon, Y., Adrian, M. & Dubochet, J. (1986). Electron beam damage to organic inclusions in vitreous, cubic and hexagonal ice. J. Microsc. 141, 375384.CrossRefGoogle Scholar
Talmon, Y., Davis, H. T., Scriven, L. E., & Thomas, E. L. (1979). Mass loss and etching of frozen hydrated specimens. J. Microsc. 117, 321332.CrossRefGoogle Scholar
Talmon, Y. & Thomas, E. L. (1977 a). Beam heating of a moderately thick cold stage specimen in the SEM/STEM. J. Microsc. III, 151164.CrossRefGoogle Scholar
Talmon, Y. & Thomas, E. L. (1977 b). Temperature rise and sublimation of water from this frozen hydrated specimens in cold stage microscopy. Scanning Elec. Microsc. 1, 265272.Google Scholar
Talmon, Y. & Thomas, E. L. (1978). Electron beam heating temperature profiles in moderately thick cold stage STEM/SEM specimens. J. Microsc. 113, 6975.CrossRefGoogle Scholar
Talmon, Y. & Thomas, E. L. (1979). Open system microthermometry – a technique for the measurement of local specimen temperature in the electron microscope. J. Mater. Sci. 14, 16471650.CrossRefGoogle Scholar
Tanford, C. (1961). Physical Chemistry of Macromolecules. New York: Wiley.Google Scholar
Tatlock, G. J. (1982). Solid gases. Ultramicroscopy 10, 8796.CrossRefGoogle Scholar
Taylor, K. A. (1978). Structure determination of frozen, hydrated, crystalline biological specimens. J. Microsc. 112, 15125.CrossRefGoogle ScholarPubMed
Taylor, K. A. & Glaeser, R. M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science 106, 1036–37.CrossRefGoogle Scholar
Taylor, K. A. & Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448456.CrossRefGoogle ScholarPubMed
Taylor, K. J., Chanzy, H. & Marchessault, R. H. (1975). Electron diffraction for hydrated crystalline biopolymers: Nigeran. J. molec. Biol. 92, 165167.CrossRefGoogle ScholarPubMed
Teixeira, J., Stanley, E., Bottinga, Y. & Richet, P. (1983). Application of a percolation model to supercooled liquids with a tetrahedral structure. Bull. Minéral. 106, 99105.CrossRefGoogle Scholar
Thornbury, W. & Mengers, P. E. (1957). An analysis of frozen section techniques. I. Sectioning of fresh-frozen tissues. J. Histochem. Cytochem. 5, 4752.CrossRefGoogle Scholar
Tokuyasu, K. T. (1973). A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 57, 551565.CrossRefGoogle Scholar
Tokuyasu, K. T. (1980). Immunochemistry of ultrathin frozen sections. Histochem. J. 12, 381403.CrossRefGoogle ScholarPubMed
Tokuyasu, K. T. & Okamura, S. (1959). A new method for making glass knives for thin sectioning. J. Biophys. Biochem. Cytol. 6, 305308.CrossRefGoogle ScholarPubMed
Trinick, J., Cooper, J., Seymour, J. & Egelman, E. H. (1986). Cryo-electron microscopy and three-dimensional reconstruction of actin filaments. J. Microsc. 141, 349360.CrossRefGoogle ScholarPubMed
Typke, D. & Radermacher, M. (1982). Determination of the phase of complex atomic scattering amplitudes from light-optical diffractograms of electron microscope images. Ultramicroscopy 9, 131138.CrossRefGoogle Scholar
Unwin, P. N. T. (1972). Electron microscopy of biological specimens by means of an electrostatic phase plate.Proc. R. Soc. London A 329, 327359.Google Scholar
Unwin, P. N. T. (1974). Electron microscopy of the stacked dish aggregate of Tobacco Mosaic Virus protein. II. The influence of electron irradiation on the stain distribution, J. molec. Biol. 87, 657670.CrossRefGoogle Scholar
Unwin, P. N.T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. molec. Biol. 94, 425440.CrossRefGoogle ScholarPubMed
Unwin, P. N.T. & Muguruma, J. (1971). Transmission electron microscopy of ice. J. appl. Phys. 42, 36403641.CrossRefGoogle Scholar
Unwin, P. N.T. & Muguruma, J. (1972). Electron microscope observations on the defect structure of ice. Physica status solidi (a) 14, 207216.CrossRefGoogle Scholar
Valentine, R. C. (1966). Response of photographic materials to electrons. In Advances in Optical and Electron Microscopy, vol. 1 (ed. Barer, R. and Cosslett, V. E.), pp. 180202. London: Academic Press.Google Scholar
Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986 a). Three-dimensional structure of clathrin cages in ice. EMBO J. 5, 529534.CrossRefGoogle ScholarPubMed
Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986 b). Location of the 100kD–50kD accessory proteins in clathrin coats. EMBO J. 5, 20792085.CrossRefGoogle ScholarPubMed
Vogel, R. H., Provencher, S. W., Von Bonsdorff, C.-H., Adrian, M. & Dubochet, J. (1986). Envelope structure of Semliki forest virus reconstructed from cryo-electron micrographs. Nature 320, 533535.CrossRefGoogle ScholarPubMed
Wade, R. H. (1984). The temperature dependence of radiation damage in organic and biological material. Ultramicroscopy 14, 265270.CrossRefGoogle Scholar
Wall, J., Bittner, J. W. & Hainfeld, J. (1977). Contamination at low temperature.In Proc. 35th Ann. EMSA Meeting, Boston, pp. 558559.CrossRefGoogle Scholar
Wall, J., Isaacson, M. & Langmore, J. (1974). The collection of scattered electrons in dark-field electron microscopy. II. Inelastic scattering. Optik 39, 359374.Google Scholar
Wilson, D. (1979). Supercold: An Introduction to Low Temperature Technology, London & Boston: Faber & Faber.Google Scholar
Zierold, K. (1982). Preparation of biological cryosections for analytical electron microscopy. Ultramicroscopy 10, 4554.CrossRefGoogle ScholarPubMed
Zierold, K. (1984). The morphology of ultrathin cryosections. Ultramicroscopy 14, 201209.CrossRefGoogle Scholar
Zierold, K. (1987). Cryoultramicrotomy. In Cryotechniques in Biological Electron Microscopy (ed. Steinbrecht, A. and Zierold, K., pp. 132148). Heidelberg: Springer Verlag.CrossRefGoogle Scholar