Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:20:36.568Z Has data issue: false hasContentIssue false

Variability Constraints on Blazar Magnetic Fields

Published online by Cambridge University Press:  05 March 2013

Matthew G. Baring*
Affiliation:
Rice University, Department of Physics and Astronomy MS-108, PO Box 1892, Houston, TX 77251, USA; baring@rice.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Synchrotron self-Compton (SSC), external Compton, and hadronic models of blazar emission all invoke particle acceleration at relativistic shocks as the dissipation mechanism seeding their non-thermal X-ray and gamma-ray emission. Studies of diffusive acceleration at such relativistic shocks are more sparse than those pertaining to their non-relativistic counterparts. This paper presents acceleration time results from the theory of relativistic shock acceleration that are pertinent to AGN observations. This temporal information interfaces critically with the observed rapid variability of blazars. Very recent theoretical results are presented, where it is determined that acceleration times can never become arbitrarily short in relativistic shocks, but are dominated by diffusion in the downstream region and couple to the particle's gyroperiod. This fundamental bound links to the variability timescale to generate a firm lower bound to the environmental magnetic field of blazars such as Mrk 421. Consistency of such a bound with SSC spectral models and flare decay times is discussed.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2002

References

Achterberg, A., et al. 2001, MNRAS, 328, 393 CrossRefGoogle Scholar
Baring, M. G. 1999, in Proc. 26th ICRC (Salt Lake City), IV, 5 (OG 2.3.03)Google Scholar
Baring, M. G., et al. 1999, ApJ, 513, 311 CrossRefGoogle Scholar
Bednarz, J. 2000, MNRAS, 315, L37 CrossRefGoogle Scholar
Bednarz, J., & Ostrowski, M. 1998, PhRvL, 80, 3911 Google Scholar
Catanese, M., & Sambruna, R. M. 2000, ApJ, 534, L39 CrossRefGoogle Scholar
Dermer, C. D., Schlickeiser, R., & Mastichiadis, A. 1992, A&A, 256, L27 Google Scholar
Dermer, C. D., Sturner, S. J., & Schlickeiser, R. 1997, ApJS, 109, 103 CrossRefGoogle Scholar
Ellison, D. C., Baring, M. G., & Jones, F. C. 1995, ApJ, 453, 873 CrossRefGoogle Scholar
Ellison, D. C., Jones, F. C., & Reynolds, S. P. 1990, ApJ, 360, 702 (EJR90)CrossRefGoogle Scholar
Forman, M. A., Jokipii, J. R., & Owens, A. J. 1974, ApJ, 192, 535 CrossRefGoogle Scholar
Ghisellini, G., et al. 1993, ApJ, 407, 65 CrossRefGoogle Scholar
Hartman, R. C., et al. 2001, ApJ, 553, 683 CrossRefGoogle Scholar
Kirk, J. G., & Heavens, A. F. 1989, MNRAS, 239, 995 CrossRefGoogle Scholar
Kirk, J. G., & Schneider, P. 1987, ApJ, 325, 415 Google Scholar
Kirk, J. G., et al. 2000, ApJ, 542, 235 CrossRefGoogle Scholar
Krawczynski, H., et al. 2001, ApJ, 559, 187 CrossRefGoogle Scholar
Li, H., & Kusunose, M. 2000, ApJ, 536, 729 CrossRefGoogle Scholar
Maraschi, L., Ghisellini, G., & Celotti, A. 1992, ApJ, 397, L5 CrossRefGoogle Scholar
Maraschi, L., et al. 1999, ApJ, 526, L81 CrossRefGoogle Scholar
Sikora, M., Begelman, M. C., & Rees, M. J. 1994, ApJ, 421, 153 CrossRefGoogle Scholar
Takahashi, T., et al. 2000, ApJ, 542, L105 CrossRefGoogle Scholar