Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T08:52:16.558Z Has data issue: false hasContentIssue false

The transience and persistence of high optical polarisation state in beamed radio quasars

Published online by Cambridge University Press:  21 February 2023

Krishan Chand*
Affiliation:
Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263002, India Department of Physics, Kumaun University, Nainital 263002, India
Gopal-Krishna
Affiliation:
UM-DAE Centre for Excellence in Basic Sciences, Vidyanagari, Mumbai 400098, India
Amitesh Omar
Affiliation:
Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263002, India
Hum Chand
Affiliation:
Department of Physics and Astronomical Science, Central University of Himachal Pradesh (CUHP), Dharamshala 176215, India
P. S. Bisht
Affiliation:
Department of Physics, Soban Singh Jeena University, Almora 263601, India
*
Corresponding author: Krishan Chand, Email: krishanchand007.kc@gmail.com.

Abstract

We examine the long-term stability (on decade-like timescales) of optical ‘high polarisation’ (HP) state with ${p_{opt}}$ ${> 3\%}$, which commonly occurs in flat-spectrum (i.e., beamed) radio quasars (FSRQs) and is a prominent marker of blazar state. Using this clue, roughly a quarter of the FSRQ population has been reported to undergo HP $\leftrightarrow$ non-HP state transition on year-like timescales. This work examines the extent to which HP (i.e., blazar) state can endure in a FSRQ, despite these ‘frequent’ state transitions. This is the first attempt to verify, using purely opto-polarimetric data for a much enlarged sample of blazars, the recent curious finding that blazar state in individual quasars persists for at least a few decades, despite its changing/swinging observed fairly commonly on year-like timescales. The present analysis is based on a well-defined sample of 83 radio quasars, extracted from the opto-polarimetric survey RoboPol (2013–2017), for which old opto-polarimetric data taken prior to 1990 could be found in the literature. By a source-wise comparison of these two datasets of the same observable ($p_{opt}$), we find that $\sim$90% of the 63 quasars found in blazar state in our RoboPol sample, were also observed to be in that state about three decades before. On the other hand, within the RoboPol survey itself, we find that roughly a quarter of the blazars in our sample migrated to the other polarisation state on year-like timescales, by crossing the customary $p_{opt}$ = 3% threshold. Evidently, these relatively frequent transitions (in either direction) do not curtail the propensity of a radio quasar to retain its blazar (i.e., HP) state for at least a few decades. The observed transitions/swings of polarisation state are probably manifestation of transient processes, like ejections of synchrotron plasma blobs (VLBI radio knots) from the active nucleus.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, Z., Carrara, E. A., Zensus, J. A., & Unwin, S. C. 1996, A&AS, 115, 543Google Scholar
Angel, J. R. P., & Stockman, H. S. 1980, ARA&A, 18, 321CrossRefGoogle Scholar
Antonucci, R. R. J. 1984, ApJ, 278, 499Google Scholar
Antonucci, R. 1993, ARA&A, 31, 473Google Scholar
Ballard, K. R., Mead, A. R. G., Brand, P. W. J. L., & Hough, J. H. 1990, MNRAS, 243, 640Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, RevModPhys, 56, 255Google Scholar
Bellm, E. C., et al. 2019, PASP, 131, 018002Google Scholar
Biermann, P., et al. 1981, ApJ, 247, L53Google Scholar
Blandford, R. D., & Königl, A. 1979, ApJ, 232, 34Google Scholar
Blandford, R. D., & Rees, M. J. 1978, in BL Lac Objects, ed. Wolfe, A. M., 328Google Scholar
Blinov, D., et al. 2018, MNRAS, 474, 1296Google Scholar
Blinov, D., et al. 2021, MNRAS, 501, 3715Google Scholar
Brindle, C., Hough, J. H., Bailey, J. A., Axon, D. J., & Hyland, A. R. 1986, MNRAS, 221, 739Google Scholar
Chand, K., & Gopal-Krishna, 2022, MNRAS, 516, L18Google Scholar
Courvoisier, T. J. L., Robson, E. I., Blecha, A., Bouchet, P., Hughes, D. H., Krisciunas, K., & Schwarz, H. E. 1988, Natur, 335, 330,Google Scholar
Fugmann, W. 1988, A&A, 205, 86Google Scholar
Fugmann, W., & Meisenheimer, K. 1988, A&AS, 76, 145Google Scholar
Gopal-Krishna, , & Wiita, P. J. 2018, BSRSL, 87, 281Google Scholar
Goyal, A., Gopal-Krishna, , Wiita, P. J., Anupama, G. C., Sahu, D. K., Sagar, R., & Joshi, S. 2012, A&A, 544, A37Google Scholar
Goyal, A., Gopal-Krishna, , Paul, J. W., Stalin, C. S., & Sagar, R. 2013, MNRAS, 435, 1300Google Scholar
Gupta, A. C., et al. 2017, MNRAS, 472, 788Google Scholar
Hughes, P. A., Aller, H. D., & Aller, M. F. 1985, ApJ, 298, 301Google Scholar
Impey, C. D., Brand, P. W. J. L., & Tapia, S. 1982, MNRAS, 198, 1Google Scholar
Impey, C. D., Lawrence, C. R., & Tapia, S. 1991, ApJ, 375, 46Google Scholar
Impey, C. D., & Tapia, S. 1988, ApJ, 333, 666Google Scholar
Impey, C. D., & Tapia, S. 1990, ApJ, 354, 124 (IT90)Google Scholar
Jannuzi, B. T., Smith, P. S., & Elston, R. 1993, ApJS, 85, 265Google Scholar
Jorstad, S. G., Marscher, A. P., Mattox, J. R., Aller, M. F., Aller, H. D.,Wehrle, A. E., & Bloom, S. D. 2001, ApJ, 556, 738Google Scholar
Karamanavis, V., et al. 2016, A&A, 586, A60Google Scholar
Kinman, T. D. 1976, ApJ, 205, 1Google Scholar
Krichbaum, T. P., et al. 1990, A&A, 237, 3Google Scholar
Kuhr, H., Liebert, J. W., Strittmatter, P. A., Schmidt, G. D., & Mackay, C. 1983, ApJ, 275, L33Google Scholar
Kühr, H., & Schmidt, G. D. 1990, AJ, 99, 1Google Scholar
Lähteenmäki, A., & Valtaoja, E. 2003, ApJ, 590, 95Google Scholar
Landoni, M., Falomo, R., Paiano, S., & Treves, A. 2020, ApJS, 250, 37Google Scholar
Liodakis, I., Romani, R. W., Filippenko, A. V., Kiehlmann, S., Max-Moerbeck, W., Readhead, A. C. S., & Zheng, W. 2018, MNRAS, 480, 5517Google Scholar
Liodakis, I., et al. 2020, ApJ, 902, 61Google Scholar
Lister, M. L., & Smith, P. S. 2000, ApJ, 541, 66Google Scholar
Lister, M. L., et al. 2009, AJ, 138, 1874Google Scholar
Marscher, A. 2016, Galaxies, 4, 37Google Scholar
Marscher, A. P., & Gear, W. K. 1985, ApJ, 298, 114Google Scholar
Marscher, A. P., Jorstad, S. G., Agudo, I., MacDonald, N. R., & Scott, T. L. 2012, arXiv e-prints, p. arXiv:1204.6707Google Scholar
Martin, P. G., Thompson, I. B., Maza, J., & Angel, J. R. P. 1983, ApJ, 266, 470Google Scholar
Massaro, E., Maselli, A., Leto, C., Marchegiani, P., Perri, M., Giommi, P., & Piranomonte, S. 2015, Ap&SS, 357, 75Google Scholar
Mead, A. R. G., Ballard, K. R., Brand, P. W. J. L., Hough, J. H., Brindle, C., & Bailey, J. A. 1990, A&AS, 83, 183Google Scholar
Miller, J. S. 1975, ApJ, 200, L55Google Scholar
Moore, R. L., & Stockman, H. S. 1981, ApJ, 243, 60Google Scholar
Moore, R. L., & Stockman, H. S. 1984, ApJ, 279, 465Google Scholar
Mutel, R. L., Phillips, R. B., Su, B., & Bucciferro, R. R. 1990, ApJ, 352, 81Google Scholar
Pandey, A., Rajput, B., & Stalin, C. S. 2022, MNRAS, 510, 1809Google Scholar
Puschell, J. J., Jones, T. W., Phillips, A. C., Rudnick, L., Simpson, E., Sitko, M., Stein, W. A., & Moneti, A. 1983, ApJ, 265, 625Google Scholar
Savolainen, T.,Wiik, K., Valtaoja, E., Jorstad, S. G., & Marscher, A. P. 2002, A&A, 394, 851Google Scholar
Sitko, M. L., Schmidt, G. D., & Stein, W. A. 1985, ApJS, 59, 323Google Scholar
Smith, P. S., Balonek, T. J., Elston, R., & Heckert, P. A. 1987, ApJS, 64, 459Google Scholar
Smith, P. S., Balonek, T. J., Heckert, P. A., & Elston, R. 1986, ApJ, 305, 484Google Scholar
Smith, P. S., Elston, R., Berriman, G., Allen, R. G., & Balonek, T. J. 1988, ApJ, 326, L39CrossRefGoogle Scholar
Stockman, H. S., & Angel, J. R. P. 1978, ApJ, 220, L67CrossRefGoogle Scholar
Stockman, H. S., Moore, R. L., & Angel, J. R. P. 1984, ApJ, 279, 485Google Scholar
Strittmatter, P. A., Serkowski, K., Carswell, R., Stein, W. A., Merrill, K. M., & Burbidge, E. M. 1972, ApJ, 175, L7Google Scholar
Tarnopolski, M., Zywucka, N., Marchenko, V., & Pascual-Granado, J. 2020, ApJS, 250, 1CrossRefGoogle Scholar
Tateyama, C. E., Kingham, K. A., Kaufmann, P., Piner, B. G., Botti, L. C. L., & de Lucena, A. M. P. 1999, ApJ, 520, 627Google Scholar
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803CrossRefGoogle Scholar
Wehrle, A. E., et al. 2012, ApJ, 758, 72Google Scholar
Wills, D.,Wills, B. J., Breger, M., & Hsu, J. C. 1980, AJ, 85, 1555Google Scholar
Wills, B. J.,Wills, D., Breger, M., Antonucci, R. R. J., & Barvainis, R. 1992, ApJ, 398, 454CrossRefGoogle Scholar