Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T22:38:25.233Z Has data issue: false hasContentIssue false

TeV Gamma Rays from Ultrahigh Energy Cosmic Ray Interactions in the Cores of Active Galactic Nuclei: Lessons from Centaurus A

Published online by Cambridge University Press:  02 January 2013

M. Kachelrieß
Affiliation:
Institutt for fysikk, NTNU, Trondheim, Norway
S. Ostapchenko
Affiliation:
Institutt for fysikk, NTNU, Trondheim, Norway D. V. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Russia
R. Tomàs
Affiliation:
II. Institut für Theoretische Physik, Universität Hamburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

TeV gamma rays have been observed from blazars as well as from radio galaxies like M 87 and Centaurus A. In leptonic models, gamma rays above the pair production threshold can escape from the ultrarelativistic jet, because large Lorentz factors reduce the background photon densities compared to those required for isotropic emission. Here we discuss an alternative scenario, where very high energy photons are generated as secondaries from ultrahigh energy cosmic rays interactions in the cores of active galactic nuclei. We show that TeV gamma-rays can escape from the core despite large infrared and ultraviolet backgrounds. For the special case of Centaurus A, we study whether the various existing observations from the far infrared to the ultrahigh energy range can be reconciled within this picture.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Abraham, J. et al. , 2007, Science, 318, 939CrossRefGoogle Scholar
Acciari, V. A. et al. , 2009, Science, 325, 444Google Scholar
Aharonian, F. et al. , 2009, ApJL, 695, L40CrossRefGoogle Scholar
Aharonian, F. & Rieger, F., 2009, A&A, 506, 3, L41Google Scholar
Bell, A. R. & Lucek, S. G., 2001, MNRAS, 321, 438CrossRefGoogle Scholar
Berezinsky, V., Gazizov, A. Z. & Grigorieva, S. I., 2004, Nucl. Phys. Proc. Suppl., 136Google Scholar
Bicknell, G. V. & Li, J., 2007, Ap&SS, 311, 275Google Scholar
Cappellari, M. et al. , 2008, arXiv:0812.1000 [astro-ph]Google Scholar
Cheung, T. et al. , 2009, PASA, this volumeGoogle Scholar
Evans, D. A. et al. , 2004, ApJ, 612, 786CrossRefGoogle Scholar
Hardcastle, M. J., Cheung, C. C., Feain, I. J. & Stawarz, L., 2008, MNRAS, 24, 337Google Scholar
Kachelries, M., Ostapchenko, S. & Tomàs, R., 2009a, New J. Phys., 11, 065017CrossRefGoogle Scholar
Kachelries, M., Ostapchenko, S. & Tomàs, R., 2009b, Int. J. Mod. Phys. D, 18, 1591CrossRefGoogle Scholar
Marconi, A. et al. , 2000, ApJ, 528, 276CrossRefGoogle Scholar
Markowitz, A. et al. , 2007, ApJ, 665, 209CrossRefGoogle Scholar
Meisenheimer, K. et al. , 2007, A&A, 471, 453Google Scholar
Neronov, A. & Aharonian, F. A., 2007, ApJ, 671, 85CrossRefGoogle Scholar
Orellana, M. & Romero, G. E., 2009, AIP Conf. Proc., 1123, 242CrossRefGoogle Scholar
Piner, B. G., Pant, N. & Edwards, P. G., arXiv:0801.2749 [astro-ph]Google Scholar
Radomski, J. T. et al. , 2008, ApJ, 681, 141RCrossRefGoogle Scholar
Reimer, A., Protheroe, R. J. & Donea, A. C., 2004, New Astron. Rev., 48, 411CrossRefGoogle Scholar
Rejkuba, M., 2004, A&A, 413, 903Google Scholar
Rieger, F. M. & Aharonian, F. A., 2008, A&A, 479, L5Google Scholar
Shakura, N. I. & Syunyaev, R. A., 1973, A&A, 24, 337Google Scholar