Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T15:17:20.157Z Has data issue: false hasContentIssue false

Neutron Capture Cross Sections for the Weak s Process

Published online by Cambridge University Press:  05 March 2013

M. Heil*
Affiliation:
Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany
A. Juseviciute
Affiliation:
Forschungszentrum Karlsruhe, Institut für Kernphysik, D-76021 Karlsruhe, Germany
F. Käppeler
Affiliation:
Forschungszentrum Karlsruhe, Institut für Kernphysik, D-76021 Karlsruhe, Germany
R. Gallino
Affiliation:
Dipartimento di Fisica Generale, Universitá di Torino, Via P. Giuria 1, 10125 (Torino), Italy Center for Stellar and Planetary Astrophysics, Monash University, Victoria 3800, Australia
M. Pignatari
Affiliation:
Astrophysics Group, School of Physical and Geographical Sciences, Keele University, UK Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA
E. Uberseder
Affiliation:
Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556, USA
*
CCorresponding author. Email: m.heil@gsi.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In past decades a lot of progress has been made towards understanding the main s-process component that takes place in thermally pulsing Asymptotic Giant Branch (AGB) stars. During this process about half of the heavy elements, mainly between 90 ≤ A ≤ 209 are synthesized. Improvements were made in stellar modeling as well as in measuring relevant nuclear data for a better description of the main s process. The weak s process, which contributes to the production of lighter nuclei in the mass range 56 ≤ A ≤ 90 operates in massive stars (M ≥ 8 M) and is much less understood. A better characterization of the weak s component would help disentangle the various contributions to element production in this region. For this purpose, a series of measurements of neutron-capture cross sections have been performed on medium-mass nuclei at the 3.7-MV Van de Graaff accelerator at FZK using the activation method. Also, neutron captures on abundant light elements with A < 56 play an important role for s-process nucleosynthesis, since they act as neutron poisons and affect the stellar neutron balance. New results are presented for the (n, γ) cross sections of 41K and 45Sc, and revisions are reported for a number of cross sections based on improved spectroscopic information.

Type
s-Process and n Capture
Copyright
Copyright © Astronomical Society of Australia 2009

References

Anders, E. & Grevesse, N., 1989, GeCoA, 53, 197 Google Scholar
Arlandini, C., Käppeler, F., Wisshak, K., Gallino, R., Lugaro, M., Busso, M. & Straniero, O., 1999, ApJ, 525, 886 Google Scholar
Bao, Z. Y., Beer, H., Käppeler, F., Voss, F., Wisshak, K. & Rauscher, T., 2000, ADNDT, 76, 70 Google Scholar
Beer, H. & Käppeler, F., 1980, PhRvC, 21, 534 Google Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. & Hoyle, F., 1957, RvMP, 29, 547 Google Scholar
Burrows, T. W., 1995, NDS, 74, 1 Google Scholar
Chunmei, Z., 2002, NDS, 95, 59 Google Scholar
Fröhlich, C., Martínez-Pinedo, G., Liebendörfer, M., Thielemann, F.-K., Bravo, E., Hix, W. R., Langanke, K. & Zinner, N. T., 2006, PhRvL, 96, 142502Google Scholar
Heil, M., Käppeler, F., Uberseder, E., Gallino, R. & Pignatari, M., 2008b, PhRvC, 77, 015808Google Scholar
Heil, M., Käppeler, F., Uberseder, E., Gallino, R., Bisterzo, S. & Pignatari, M., 2008a, PhRvC, 78, 025802Google Scholar
Helmer, R. G., 1994, NDS, 72, 83 Google Scholar
Helmer, R. G., 1998, NDS, 83, 285 Google Scholar
Käppeler, F., Walter, G. & Mathews, G., 1985, ApJ, 291, 319 Google Scholar
Käppeler, F. et al., 1994, ApJ, 437, 396 CrossRefGoogle Scholar
Katakura, J., 1999, NDS, 86, 955 Google Scholar
Kenny, M., Allen, B. J. & Macklin, R. L., 1977, AuJPh, 30, 605 Google Scholar
Macklin, R. L., 1984, NSE, 88, 129 CrossRefGoogle Scholar
Mohr, P., Sedyshev, P. V., Beer, H., Stadler, W., Oberhummer, H., Popov, Yu. P. & Rochow, W., 1999, PhRvC, 59, 3410 Google Scholar
Musgrove, A. R. de, L., Allen, B. J. & Macklin, R. L., 1978, in Neutron Physics and Nuclear Data for Reactors and other Applied Purposes (Paris: OECD), 426 Google Scholar
Nassar, H. et al., 2005, PhRvL, 94, 092504Google Scholar
Pignatari, M., Gallino, R., Meynet, G., Hirschi, R., Herwig, F. & Wiescher, M., 2008, ApJ, 687, L95 Google Scholar
Raiteri, C. M., Busso, M., Gallino, R. & Picchio, G., 1991, ApJ, 371, 665 Google Scholar
Raiteri, C. M., Gallino, R., Busso, M., Neuberger, D. & Käppeler, F., 1993, ApJ, 419, 207 Google Scholar
Rauscher, T., Heger, A., Hoffman, R. D. & Woosley, S. E., 2002, ApJ, 576, 323 CrossRefGoogle Scholar
Reich, C. W., 1994, NDS, 71, 709 Google Scholar
Reich, C. W. & Helmer, R. G., 2000, NDS, 90, 645 Google Scholar
Singh, B. & Cameron, J. A., 2001, NDS, 92, 1 Google Scholar
Sneden, C. et al., 2003, ApJ, 591, 936 Google Scholar
Straniero, O., Gallino, R., Busso, M., Chieffi, A., Raiteri, C. M., Limongi, M. & Salaris, M., 1995, ApJ, 440, L85 Google Scholar
The, L.-S., El Eid, M. & Meyer, B., 2007, ApJ, 655, 1058 Google Scholar
Travaglio, C., Gallino, R., Arnone, E., Cowan, J., Jordan, F. & Sneden, C., 2004, ApJ, 601, 864 CrossRefGoogle Scholar
Uberseder, E., Heil, M., Käppeler, F., Görres, J. & Wiescher, M., 2007, PhRvC, 75, 0358019Google Scholar
Walter, G., Beer, H., Käppeler, F., Reffo, G. & Fabbri, F., 1986, A&A, 167, 186 Google Scholar
Wu, S.-C., 2000, NDS, 91, 1 Google Scholar
Zinner, E., 1998, AREPS, 26, 147 Google Scholar