Hostname: page-component-857557d7f7-gtc7z Total loading time: 0.001 Render date: 2025-11-23T03:58:17.261Z Has data issue: false hasContentIssue false

Mode identification and period fitting in six pulsating hot subdwarfs

Published online by Cambridge University Press:  16 May 2024

S.K. Sahoo*
Affiliation:
Nicolaus Copernicus Astronomical Centre of the Polish Academy of Sciences, Warsaw, Poland
A.S. Baran
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO, USA Astronomical Observatory, University of Warsaw, Warszawa, Poland
P. Németh
Affiliation:
Astroserver.org, Malomsok, Hungary Astronomical Institute of the Czech Academy of Sciences, Ondřejov, Czech Republic
H.L. Worters
Affiliation:
South African Astronomical Observatory, Cape Town, South Africa
S. Pramod Kumar
Affiliation:
Indian Institute of Astrophysics, Koramangala, Bangalore, India
S. Joshi
Affiliation:
Aryabhatta Research Institute of Observational Sciences, Nainital, India
D. Kilkenny
Affiliation:
Department of Physics and Astronomy, University of the Western Cape, Bellville, South Africa
*
Corresponding author: S.K. Sahoo; Email: sumanta.kumar27@gmail.com

Abstract

We report the results of our analysis of six gravity-mode pulsating hot subdwarf stars observed in the short cadence mode by Transiting Exoplanet Survey Satellite. We detected at least 10 pulsation periods in each star, searched for multiplets, and used an asymptotic period spacing to identify modes. We used a grid of evolutionary and pulsation models calculated with the MESA and GYRE, along with spectroscopic parameters and modal degree identification, to derive the physical properties of the stars. We checked the relation between the helium content and pulsations and found that no pulsator exists among the extremely helium-rich hot subdwarfs, while the number of detected pulsators in other helium groups increases as the helium content decreases. We found p- and g-mode hot subdwarfs pulsators in all Galactic populations.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Altmann, M., Edelmann, H., & de Boer, K. S. 2004, A&A, 414, 18110.1051/0004-6361:20031606CrossRefGoogle Scholar
Baran, A., & Sanjayan, S. 2023, A&A, 73, 21Google Scholar
Baran, A. S., & Koen, C. 2021, A&A, 71, 113Google Scholar
Baran, A. S., Sahoo, S. K., Sanjayan, S., & Ostrowski, J. 2021, MNRAS, 503, 3828CrossRefGoogle Scholar
Baran, A. S., et al. 2023, A&A, 669, A48CrossRefGoogle Scholar
Baran, A. S., & Winans, A. 2012, A&A, 62, 343Google Scholar
Billères, M., Fontaine, G., Brassard, P., & Liebert, J. 2002, ApJ, 578, 515CrossRefGoogle Scholar
Boudreaux, T. M., et al. 2017, ApJ, 845, 171CrossRefGoogle Scholar
Charpinet, S., et al. 2019, A&A, 632, A90Google Scholar
Charpinet, S., Fontaine, G., Brassard, P., Chayer, P., Rogers, F. J., Iglesias, C. A., & Dorman, B. 1997, ApJ, 483, L123CrossRefGoogle Scholar
Charpinet, S., Giammichele, N., Zong, W., Grootel, V. V., Brassard, P., & Fontaine, G. 2018, OA, 27, 112CrossRefGoogle Scholar
Colin, J., et al. 1994, A&A, 287, 38Google Scholar
Crause, L. A., et al. 2019, JATIS, 5, 024007Google Scholar
Dziembowski, W. 1977, A&A, 27, 203CrossRefGoogle Scholar
Edelmann, H., Heber, U., Hagen, H.-J., Lemke, M., Dreizler, S., Napiwotzki, R., & Engels, D. 2003, A&A, 400, 93910.1051/0004-6361:20030135CrossRefGoogle Scholar
Fontaine, G., Brassard, P., Charpinet, S., Green, E. M., Randall, S. K., & Van Grootel, V. 2012, A&A, 539, A12CrossRefGoogle Scholar
Collaboration, Gaia, et al. 2023, A&A, 674, A1Google Scholar
Geier, S., Østensen, R. H., Nemeth, P., Gentile Fusillo, N. P., Gänsicke, B. T., Telting, J. H., Green, E. M., & Schaffenroth, J. 2017, A&A, 600, A50CrossRefGoogle Scholar
Geier, S., Raddi, R., Gentile Fusillo, N. P., & Marsh, T. R. 2019, A&A, 621, A38CrossRefGoogle Scholar
Goldstein, J. & Townsend, R. H. D. 2020, ApJ, 899, 11610.3847/1538-4357/aba748CrossRefGoogle Scholar
Green, R. F., Schmidt, M., & Liebert, J. 1986, ApJS, 61, 30510.1086/191115CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., & Marsh, T. R. 2003, MNRAS, 341, 669CrossRefGoogle Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., & Ivanova, N. 2002, MNRAS, 336, 449CrossRefGoogle Scholar
Heber, U. 2016, PASP, 128, 08200110.1088/1538-3873/128/966/082001CrossRefGoogle Scholar
Hubeny, I. & Lanz, T. 1995, ApJ, 439, 87510.1086/175226CrossRefGoogle Scholar
Hubeny, I. & Lanz, T. 2017, arXiv e-prints, arXiv:1706.01935Google Scholar
Kaluzny, J. & Rucinński, S. M. 1993, MNRAS, 265, 34CrossRefGoogle Scholar
Kilkenny, D., Heber, U., & Drilling, J. S. 1988, South African Astronomical Observatory Circular, 12, 1Google Scholar
Lei, Z., Zhao, J., Németh, P., & Zhao, G. 2018, ApJ, 868, 70CrossRefGoogle Scholar
Lenz, P. & Breger, M. 2005, CoAst, 146, 53CrossRefGoogle Scholar
Lightkurve Collaboration, et al. 2018, Astrophysics Source Code Library, record ascl:1812.013Google Scholar
Luo, Y., Németh, P., Wang, K., Wang, X., & Han, Z. 2021, ApJS, 256, 2810.3847/1538-4365/ac11f6CrossRefGoogle Scholar
Martin, P., Jeffery, C. S., N., N., & Woolf, V. M. 2016, MNRAS, 467, 68Google Scholar
Moehler, S. 2001, PASP, 113, 116210.1086/323297CrossRefGoogle Scholar
Moni Bidin, C., Catelan, M., Villanova, S., Piotto, G., Altmann, M., Momany, Y., & Moehler, S. 2008, in Hot Subdwarf Stars and Related Objects, Vol. 392, Astronomical Society of the Pacific Conference Series, ed. Heber, U., Jeffery, C. S., & Napiwotzki, R., 27Google Scholar
Németh, P., Kawka, A., & Vennes, S. 2012, MNRAS, 427, 2180CrossRefGoogle Scholar
Østensen, R. H., et al. 2010, A&A, 513, A6CrossRefGoogle Scholar
Østensen, R. H., Telting, J. H., Reed, M. D., Baran, A. S., Nemeth, P., & Kiaeerad, F. 2014, A&A, 569, A15CrossRefGoogle Scholar
Ostrowski, J., Baran, A. S., Sanjayan, S., & Sahoo, S. K. 2021, MNRAS, 503, 4646CrossRefGoogle Scholar
Paxton, B., et al. 2019, ApJSS, 243, 1010.1353/imp.2019.0104CrossRefGoogle Scholar
Reed, M. D., et al. 2020, MNRAS, 493, 5162CrossRefGoogle Scholar
Reed, M. D., Slayton, A., Baran, A. S., Telting, J. H., østensen, R. H., Jeffery, C. S., Uzundag, M., & Sanjayan, S. 2021, MNRAS, 507, 417810.1093/mnras/stab2405CrossRefGoogle Scholar
Ricker, G. R., et al. 2014, JATIS, 1, 014003Google Scholar
Sahoo, S. K., et al. 2020a, MNRAS, 495a, 2844Google Scholar
Sahoo, S. K., Baran, A. S., Sanjayan, S., & Ostrowski, J. 2020b, MNRAS, 499b, 550810.1093/mnras/staa2991CrossRefGoogle Scholar
Silvotti, R., Németh, P., Telting, J. H., Baran, A. S., østensen, R. H., Ostrowski, J., Sahoo, S. K., & Prins, S. 2022, MNRAS, 511, 220110.1093/mnras/stac160CrossRefGoogle Scholar
Uzundag, M., et al. 2021, A&A, 651, A12110.1051/0004-6361/202140961CrossRefGoogle Scholar
Vos, J., Østensen, R. H., Németh, P., Green, E. M., Heber, U., & Van Winckel, H. 2013, A&A, 559, A54CrossRefGoogle Scholar