Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T19:04:56.226Z Has data issue: false hasContentIssue false

Measuring Mass-Loss Evolution at the Tip of the Asymptotic Giant Branch

Published online by Cambridge University Press:  02 January 2013

C. Sandin*
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
M. M. Roth
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
D. Schönberner
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
*
BCorresponding author. Email: csandin@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the final stages of stellar evolution low- to intermediate-mass stars lose their envelope in increasingly massive stellar winds. Such winds affect the interstellar medium and the galactic chemical evolution as well as the circumstellar envelope where planetary nebulae form subsequently. Characteristics of this mass loss depend on both stellar properties and properties of gas and dust in the wind formation region. In this paper we present an approach towards studies of mass loss using both observations and models, focussing on the stage where the stellar envelope is nearly empty of mass. In a recent study we measure the mass-loss evolution, and other properties, of four planetary nebulae in the Galactic disk. Specifically we use the method of integral field spectroscopy on faint halos, which are found outside the much brighter central parts of a planetary nebula. We begin with a brief comparison between our and other observational methods to determine mass-loss rates in order to illustrate how they differ and complement each other. An advantage of our method is that it measures the gas component directly requiring no assumptions of properties of dust in the wind. Thereafter we present our observational approach in more detail in terms of its validity and its assumptions. In the second part of this paper we discuss capabilities and assumptions of current models of stellar winds. We propose and discuss improvements to such models that will allow meaningful comparisons with our observations. Currently the physically most complete models include too little mass in the model domain to permit a formation of winds with as high mass-loss rates as our observations show.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Andersen, A., Höfner, S. & Gautschy-Loidl, R., 2003, A&A, 400, 981Google Scholar
Arndt, T.U., Fleischer, A.J. & Sedlmayr, E., 1997, A&A, 327, 614Google Scholar
Balick, B. & Frank, A., 2002, ARA&A, 40, 439Google Scholar
Blöcker, T., 1995, A&A, 297, 727Google Scholar
Bond, H.E., 2000, ASPC, 199, 115Google Scholar
Bowen, G.H., 1988, ApJ, 329, 299CrossRefGoogle Scholar
Canuto, V.M. & Dubovikov, M., 1998, ApJ, 493, 834Google Scholar
Chu, Y.-H., Jacoby, G.H. & Arendt, R., 1987, ApJS, 64, 529CrossRefGoogle Scholar
Corradi, R.L.M., Sánchez-Blázquez, P., Mellema, G., Giammanco, C. & Schwarz, H.E., 2004, A&A, 417, 637Google Scholar
Corradi, R.L.M., Schönberner, D., Steffen, M. & Perinotto, M., 2000, A&A, 354, 1071Google Scholar
Corradi, R.L.M., Schönberner, D., Steffen, M. & Perinotto, M., 2003, MNRAS, 340, 417CrossRefGoogle Scholar
Feuchtinger, M.U., 1999, A&AS, 136, 217Google Scholar
Fleischer, A.J., Gauger, A. & Sedlmayr, E., 1992, A&A, 266, 321Google Scholar
Frank, A., 1994, AJ, 107, 261CrossRefGoogle Scholar
Frank, A., Balick, B. & Riley, J., 1990, AJ, 100, 1903CrossRefGoogle Scholar
Freytag, B. & Höfner, S., 2008, A&A, 483, 571Google Scholar
Gail, H.-P. & Sedlmayr, E., 1999, A&A, 347, 594Google Scholar
Gauger, A., Gail, H.-P. & Sedlmayr, E., 1990, A&A, 235, 345Google Scholar
Gehmeyr, M. & Winkler, K.-H. A., 1992, A&A, 253, 92Google Scholar
Groenewegen, M. A. T., 1995, A&A, 293, 463Google Scholar
Groenewegen, M.A.T. et al. , 2007, MNRAS, 376, 313CrossRefGoogle Scholar
Guerrero, M.A., Villaver, E. & Manchado, A., 1998, ApJ, 507, 889Google Scholar
Helling, C., Winters, J.M. & Sedlmayr, E., 2000, A&A, 358, 651Google Scholar
Heske, A., Forveille, T., Omont, A., van der Veen, W. E. C. J. & Habing, H.J., 1990, A&A, 239, 173Google Scholar
Höfner, S., 2005, ESASPB, 560, 335Google Scholar
Höfner, S., 2008, A&A, 491, L1Google Scholar
Höfner, S., 2010, in Cosmic Dust – Near and Far, Eds. Henning, T., Grün, E. & Steinacker, J., ASPC, 414, in pressGoogle Scholar
Höfner, S., Feuchtinger, M.U. & Dorfi, E.A., 1995, A&A, 297, 815Google Scholar
Höfner, S., Gautschy-Loidl, R., Aringer, B. & Jørgensen, U.G., 2003, A&A, 399, 589Google Scholar
Höfner, S., Jørgensen, U.G., Loidl, R. & Aringer, B., 1998, A&A, 340, 497Google Scholar
Hrivnak, B.J., Kwok, S. & Su, K. Y. L., 2001, AJ, 121, 2775CrossRefGoogle Scholar
Jeong, K.S., Winters, J.M., Le Bertre, T. & Sedlmayr, E., 2003, A&A, 407, 191Google Scholar
Justtanont, K., Skinner, C.J., Tielens, A. G. G. M., Meixner, M. & Baas, F., 1996, ApJ, 456, 337Google Scholar
Kastner, J.H., 1992, ApJ, 401, 337CrossRefGoogle Scholar
Krabbe, A.C. & Copetti, M. V. F., 2005, A&A, 443, 981Google Scholar
Kuhfuß, R., 1986, A&A, 160, 116Google Scholar
Kwok, S., Su, K. Y. L. & Hrivnak, B.J., 1998, ApJ, 501, L117CrossRefGoogle Scholar
Manchado, A. & Pottasch, S.R., 1989, A&A, 222, 219Google Scholar
Marengo, M., 2009, PASA, 26, 365Google Scholar
Marten, H., 1993, A&A, 277, L9Google Scholar
Marten, H. & Schönberner, D., 1991, A&A, 248, 590Google Scholar
Mastrodemos, N. & Morris, M., 1999, ApJ, 523, 357CrossRefGoogle Scholar
Mattsson, L., Wahlin, R. & Höfner, S., 2010, A&A, 2010, 509, 14Google Scholar
Mauron, N. & Huggins, P.J., 1999, A&A, 349, 203Google Scholar
Mauron, N. & Huggins, P.J., 2000, A&A, 359, 707Google Scholar
Mauron, N. & Huggins, P.J., 2006, A&A, 452, 257Google Scholar
Mellema, G., 1994, A&A, 290, 915Google Scholar
Middlemass, D., Clegg, R. E. S. & Walsh, J.R., 1989a, MNRAS, 239, 5Google Scholar
Middlemass, D., Clegg, R. E. S. & Walsh, J.R., 1989b, MNRAS, 239, 1Google Scholar
Middlemass, D., Clegg, R. E. S., Walsh, J.R. & Harrington, J.P., 1991, MNRAS, 251, 284CrossRefGoogle Scholar
Monreal-Ibero, A., Roth, M.M., Schönberner, D., Steffen, M. & Böhm, P., 2005, ApJ, 628, L139CrossRefGoogle Scholar
Peimbert, M., 1981, ASSL, 88, 409Google Scholar
Perinotto, M., Schönberner, D., Steffen, M. & Calonaci, C., 2004, A&A, 414, 993Google Scholar
Plait, P. & Soker, N., 1990, AJ, 99, 1883CrossRefGoogle Scholar
Ramstedt, S., Schöier, F.L., Olofsson, H. & Lundgren, A.A., 2008, A&A, 487, 645Google Scholar
Reid, W.A. & Parker, Q.A., 2006, MNRAS, 365, 401Google Scholar
Reimers, D., 1975, in Problems in Stellar Atmospheres and Envelopes, Eds. Baschek, B., Kegel, W.H. & Traving, G., 229Google Scholar
Renzini, A., 1981, ASSL, 88, 431Google Scholar
Sahai, R., 1990, ApJ, 362, 652Google Scholar
Sahai, R., Morris, M., Sánchez Contreras, C. & Claussen, M., 2007, AJ, 134, 2200CrossRefGoogle Scholar
Sahai, R. et al. , 1998, ApJ, 493, 301CrossRefGoogle Scholar
Sahai, R., Zijlstra, A., Bujarrabal, V. & Te Lintel Hekkert, P., 1999, AJ, 117, 1408Google Scholar
Sandin, C., 2008, MNRAS, 385, 215Google Scholar
Sandin, C. & Höfner, S., 2003, A&A, 398, 253Google Scholar
Sandin, C. & Höfner, S., 2004, A&A, 413, 789Google Scholar
Sandin, C., Schönberner, D., Roth, M.M., Steffen, M., Böhm, P. & Monreal-Ibero, A., 2008, A&A, 486, 545Google Scholar
Schöier, F.L., 2007, ASPC, 378, 216Google Scholar
Schöier, F.L. & Olofsson, H., 2001, A&A, 368, 969Google Scholar
Schönberner, D., Jacob, R., Steffen, M., Perinotto, M., Corradi, R. L. M. & Acker, A., 2005, A&A, 431, 963Google Scholar
Schröder, K.-P., Winters, J.M. & Sedlmayr, E., 1999, A&A, 349, 898Google Scholar
Simis, Y. J. W., Icke, V. & Dominik, C., 2001, A&A, 371, 205Google Scholar
Soker, N., 2002, ApJ, 570, 369CrossRefGoogle Scholar
Soker, N., 2006, NewA, 11, 396CrossRefGoogle Scholar
Steffen, M. & Schönberner, D., 2003, IAUS, 209, 439Google Scholar
Su, K. Y. L., Volk, K., Kwok, S. & Hrivnak, B.J., 1998, ApJ, 508, 744Google Scholar
Terzian, Y. & Hajian, A.R., 2000, ASPC, 199, 33Google Scholar
Tylenda, R., 1986, A&A, 156, 217Google Scholar
van Horn, H.M., Thomas, J.H., Frank, A. & Blackman, E.G., 2003, ApJ, 585, 983Google Scholar
van Loon, J.T., 2007, ASPC, 378, 227Google Scholar
van Loon, J.T., 2008, MmSAI, 79, 412Google Scholar
van Loon, J.T., Cioni, M., Zijlstra, A.A. & Loup, C., 2005, A&A, 438, 273Google Scholar
van Loon, J.T., Groenewegen, M. A. T., de Koter, A., Trams, N.R., Waters, L. B. F. M., Zijlstra, A.A., Whitelock, P.A. & Loup, C., 1999, A&A, 351, 559Google Scholar
Vassiliadis, E. & Wood, P.R., 1993, ApJ, 413, 641Google Scholar
Villaver, E., García-Segura, G. & Manchado, A., 2002a, ApJ, 571, 880Google Scholar
Villaver, E., Manchado, A. & García-Segura, G., 2002b, ApJ, 581, 1204CrossRefGoogle Scholar
Villaver, E., García-Segura, G. & Manchado, A., 2003, ApJ, 585, L49Google Scholar
Wachter, A., Schröder, K.-P., Winters, J.M., Arndt, T.U. & Sedlmayr, E., 2002, A&A, 384, 452Google Scholar
Wachter, A., Winters, J.M., Schröder, K.-P. & Sedlmayr, E., 2008, A&A, 486, 497Google Scholar
Wareing, C.J., Zijlstra, A.A. & O'Brien, T.J., 2007, MNRAS, 382, 1233Google Scholar
Willson, L.A., 2000, ARA&A, 38, 573Google Scholar
Woitke, P., 2006, A&A, 452, 537Google Scholar
Woitke, P. & Niccolini, G., 2005, A&A, 433, 1101Google Scholar
Wood, P.R., 1979, ApJ, 227, 220CrossRefGoogle Scholar
Wuchterl, G. & Feuchtinger, M.U., 1998, A&A, 340, 419Google Scholar
Zijlstra, A.A., 2006, IAUS, 234, 55CrossRefGoogle Scholar
Zijlstra, A.A. & Bedding, T.R., 2002, JAAVSO, 31, 2Google Scholar