Hostname: page-component-7dd5485656-frp75 Total loading time: 0 Render date: 2025-10-28T17:04:34.482Z Has data issue: false hasContentIssue false

Hierarchical hub-filament structures and gas inflows on galaxy-cloud scales

Published online by Cambridge University Press:  03 June 2024

Jian-Wen Zhou*
Affiliation:
Max-Planck-Institut für Radioastronomie, Bonn, Germany
Timothy Davis
Affiliation:
Cardiff Hub for Astrophysics Research and Technology, School of Physics and Astronomy, Cardiff University, Cardiff, UK
*
Corresponding author: Jian-Wen Zhou; Email: jwzhou@mpifr-bonn.mpg.de

Abstract

We investigated the kinematics and dynamics of gas structures on galaxy-cloud scales in two spiral galaxies NGC5236 (M83) and NGC4321 (M100) using CO (2$-$1) line. We utilised the FILFINDER algorithm on integrated intensity maps for the identification of filaments in two galaxies. Clear fluctuations in velocity and density were observed along these filaments, enabling the fitting of velocity gradients around intensity peaks. The variations in velocity gradient across different scales suggest a gradual and consistent increase in velocity gradient from large to small scales, indicative of gravitational collapse, something also revealed by the correlation between velocity dispersion and column density of gas structures. Gas structures at different scales in the galaxy may be organised into hierarchical systems through gravitational coupling. All the features of gas kinematics on galaxy-cloud scale are very similar to that on cloud-clump and clump-core scales studied in previous works. Thus, the interstellar medium from galaxy to dense core scales presents multi-scale/hierarchical hub-filament structures. Like dense core as the hub in clump, clump as the hub in molecular cloud, now we verify that cloud or cloud complex can be the hub in spiral galaxies. Although the scaling relations and the measured velocity gradients support the gravitational collapse of gas structures on galaxy-cloud scales, the collapse is much slower than a pure free-fall gravitational collapse.

Information

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anand, G. S., et al. 2021, MNRAS, 501, 3621 Google Scholar
Arzoumanian, D., Shimajiri, Y., Inutsuka, S.-i., Inoue, T., & Tachihara, K. 2018, PASJ, 70, 96 CrossRefGoogle Scholar
Arzoumanian, D., et al. 2022, A&A, 660, A56 10.1051/0004-6361/202141699CrossRefGoogle Scholar
Ballesteros-Paredes, J., Gómez, G. C., Loinard, L., Torres, R. M., & Pichardo, B. 2009a, MNRAS, 395, L8110.1111/j.1745-3933.2009.00647.xCrossRefGoogle Scholar
Ballesteros-Paredes, J., Gómez, G. C., Pichardo, B., & Vázquez-Semadeni, E. 2009b, MNRAS, 393, 156310.1111/j.1365-2966.2008.14278.xCrossRefGoogle Scholar
Ballesteros-Paredes, J., Hartmann, L. W., Vázquez-Semadeni, E., Heitsch, F., & Zamora-Avilés, M. A. 2011, MNRAS, 411, 65 10.1111/j.1365-2966.2010.17657.xCrossRefGoogle Scholar
Ballesteros-Paredes, J., Vázquez-Semadeni, E., Palau, A., & Klessen, R. S. 2018, MNRAS, 479, 2112 Google Scholar
Chen, H.-R. V., et al. 2019, ApJ, 875, 24 Google Scholar
Chen, M. C.-Y., et al. 2020a, ApJ, 891, 8410.3847/1538-4357/ab7378CrossRefGoogle Scholar
Chen, X., et al. 2020b, NatAs, 4, 1170Google Scholar
Clarke, S. D., et al. 2023, MNRAS, 519, 3098 Google Scholar
Clarke, S. D., Whitworth, A. P., & Hubber, D. A. 2016, MNRAS, 458, 319 10.1093/mnras/stw407CrossRefGoogle Scholar
Crutcher, R. M. 2012, ARA&A, 50, 29 10.1146/annurev-astro-081811-125514CrossRefGoogle Scholar
Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E., & Troland, T. H. 2010, ApJ, 725, 466 10.1088/0004-637X/725/1/466CrossRefGoogle Scholar
Davis, T. A., et al. 2013, MNRAS, 429, 534 10.1007/s12024-013-9438-2CrossRefGoogle Scholar
Dewangan, L. K., et al. 2020, ApJ, 903, 13 10.3847/1538-4357/abb827CrossRefGoogle Scholar
Dobbs, C. L., & Pringle, J. E. 2013, MNRAS, 432, 653 10.1093/mnras/stt508CrossRefGoogle Scholar
Elmegreen, B. G., Elmegreen, D. M., & Efremov, Y. N. 2018, ApJ, 863, 59 CrossRefGoogle Scholar
Ganguly, S., Walch, S., Seifried, D., Clarke, S. D., & Weis, M. 2023, MNRAS, 525, 721 10.1093/mnras/stad2054CrossRefGoogle Scholar
Hacar, A., Kainulainen, J., Tafalla, M., Beuther, H., & Alves, J. 2016, A&A, 587, A97 10.1051/0004-6361/201526015CrossRefGoogle Scholar
Hacar, A., & Tafalla, M. 2011, A&A, 533, A34 10.1051/0004-6361/201117039CrossRefGoogle Scholar
Henshaw, J. D., Caselli, P., Fontani, F., Jiménez-Serra, I., & Tan, J. C. 2014, MNRAS, 440, 2860 10.1093/mnras/stu446CrossRefGoogle Scholar
Henshaw, J. D., Longmore, S. N., & Kruijssen, J. M. D. 2016, MNRAS, 463, L122 10.1093/mnrasl/slw168CrossRefGoogle Scholar
Henshaw, J. D., et al. 2020, NatAs, 4, 1064 Google Scholar
Ibáñez-Meja, J. C., Mac Low, M.-M., & Klessen, R. S. 2022, ApJ, 925, 196 10.3847/1538-4357/ac3b58CrossRefGoogle Scholar
Inutsuka, S.-i., Inoue, T., Iwasaki, K., & Hosokawa, T. 2015, A&A, 580, A49 10.1051/0004-6361/201425584CrossRefGoogle Scholar
Issac, N., et al. 2019, MNRAS, 485, 1775 10.1093/mnras/stz466CrossRefGoogle Scholar
Izquierdo, A. F., et al. 2018, MNRAS, 478, 2505 10.1093/mnras/sty1096CrossRefGoogle Scholar
Kim, J.-G., Ostriker, E. C., & Filippova, N. 2021, ApJ, 911, 128 10.3847/1538-4357/abe934CrossRefGoogle Scholar
Kirk, H., et al. 2013, ApJ, 766, 115 10.1088/0004-637X/766/2/115CrossRefGoogle Scholar
Koch, E. W., & Rosolowsky, E. W. 2015, MNRAS, 452, 3435 10.1093/mnras/stv1521CrossRefGoogle Scholar
Kohno, M., et al. 2021, PASJ, 73, S129 Google Scholar
Kumar, M. S. N., Palmeirim, P., Arzoumanian, D., & Inutsuka, S. I. 2020, A&A, 642, A87 10.1051/0004-6361/202038232CrossRefGoogle Scholar
Lang, P., et al. 2020, ApJ, 897, 122 Google Scholar
Leroy, A. K., et al. 2021a, ApJS, 257, 43 Google Scholar
Leroy, A. K., et al. 2021b, ApJS, 255, 19 Google Scholar
Leroy, A. K., et al. 2022, ApJ, 927, 149 10.3917/rfp.874.0927CrossRefGoogle Scholar
Li, G.-X. 2024, MNRAS, 528, L52 10.1093/mnrasl/slad149CrossRefGoogle Scholar
Li, H.-B., & Henning, T. 2011, Natur, 479, 499 Google Scholar
Li, S., et al. 2023, ApJ, 949, 109 10.3847/1538-4357/acc58fCrossRefGoogle Scholar
Lindner, R. R., et al. 2015, AJ, 149, 138 10.1088/0004-6256/149/4/138CrossRefGoogle Scholar
Liu, H. B., et al. 2015, ApJ, 804, 37 10.1088/0004-637X/804/1/37CrossRefGoogle Scholar
Liu, H.-L., et al. 2022, MNRAS, 511, 4480 Google Scholar
Liu, T., et al. 2016, ApJ, 824, 31 Google Scholar
Liu, T., et al. 2020, MNRAS, 496, 2790 Google Scholar
Lu, X., et al. 2018, ApJ, 855, 9 Google Scholar
Maud, L. T., et al. 2017, MNRAS, 467, L120 10.1093/mnrasl/slx010CrossRefGoogle Scholar
McKee, C. F., & Ostriker, E. C. 2007, ARA&A, 45, 565 10.1146/annurev.astro.45.051806.110602CrossRefGoogle Scholar
Meidt, S. E., et al. 2018, ApJ, 854, 100 10.3847/1538-4357/aaa290CrossRefGoogle Scholar
Meidt, S. E., et al. 2020, ApJ, 892, 73 10.3847/1538-4357/ab7000CrossRefGoogle Scholar
Misugi, Y., Inutsuka, S.-i., & Arzoumanian, D. 2019, ApJ, 881, 11 10.3847/1538-4357/ab2382CrossRefGoogle Scholar
Motte, F., Bontemps, S., & Louvet, F. 2018, ARA&A, 56, 41 10.1146/annurev-astro-091916-055235CrossRefGoogle Scholar
Ngoc, N. B., et al. 2023, ApJ, 953, 66 10.3847/1538-4357/acdb6eCrossRefGoogle Scholar
Peretto, N., et al. 2013, A&A, 555, A112 10.1051/0004-6361/201321318CrossRefGoogle Scholar
Pillai, T. G. S., et al. 2020, NatAs, 4, 1195 Google Scholar
Ramírez-Galeano, L., Ballesteros-Paredes, J., Smith, R. J., Camacho, V., & Zamora-Avilés, M. 2022, MNRAS, 515, 2822 10.1093/mnras/stac1848CrossRefGoogle Scholar
Rawat, V., et al. 2024, MNRAS, 528, 1460 Google Scholar
Rezaei Kh., S., & Kainulainen, J. 2022, ApJ, 930, L22 10.3847/2041-8213/ac67dbCrossRefGoogle Scholar
Riener, M., et al. 2019, A&A, 628, A78 10.1051/0004-6361/201935519CrossRefGoogle Scholar
Sanhueza, P., et al. 2021, ApJ, 915, L10 10.3847/2041-8213/ac081cCrossRefGoogle Scholar
Seifried, D., et al. 2020, MNRAS, 497, 4196 10.1093/mnras/staa2231CrossRefGoogle Scholar
Shetty, R., & Ostriker, E. C. 2006, ApJ, 647, 997 10.1086/505594CrossRefGoogle Scholar
Stephens, I. W., et al. 2022, ApJ, 926, L6 Google Scholar
Thilliez, E., Maddison, S. T., Hughes, A., & Wong, T. 2014, PASA, 31, e003 10.1017/pasa.2013.40CrossRefGoogle Scholar
Traficante, A., et al. 2018, MNRAS, 473, 4975 10.1093/mnras/stx2672CrossRefGoogle Scholar
Utreras, J., et al. 2020, ApJ, 892, 94 10.3847/1538-4357/ab7a95CrossRefGoogle Scholar
Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., Gómez, G. C., & Zamora-Avilés, M. 2019, MNRAS, 490, 3061 10.1093/mnras/stz2736CrossRefGoogle Scholar
Williams, G. M., Peretto, N., Avison, A., Duarte-Cabral, A., & Fuller, G. A. 2018, A&A, 613, A11 10.1051/0004-6361/201731587CrossRefGoogle Scholar
Yuan, J., et al. 2018, ApJ, 852, 12 CrossRefGoogle Scholar
Zhang, Q., Wang, K., Lu, X., & Jiménez-Serra, I. 2015, ApJ, 804, 141 10.1088/0004-637X/804/2/141CrossRefGoogle Scholar
Zhou, J. W., et al. 2024a, A&A, 682, A128 Google Scholar
Zhou, J.-W., et al. 2022, MNRAS, 514, 6038 Google Scholar
Zhou, J.-W., et al. 2023a, MNRAS, 519, 2391 Google Scholar
Zhou, J. W., et al. 2023b, A&A, 676, A69 Google Scholar
Zhou, J. W., et al. 2024b, A&A, 682, A173 10.1051/0004-6361/202348108CrossRefGoogle Scholar