Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T18:48:31.374Z Has data issue: false hasContentIssue false

Heavy Element Abundances in Planetary Nebulae: A Theorist's Perspective

Published online by Cambridge University Press:  02 January 2013

Amanda I. Karakas*
Affiliation:
Research School of Astronomy & Astrophysics, Mount Stromlo Observatory, Cotter Road Weston Creek, ACT 2611
Maria Lugaro
Affiliation:
Centre for Stellar and Planetary Astrophysics, Monash University, PO Box 28M, Clayton, Vic 3800
*
CCorresponding author. Email: akarakas@mso.anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The determination of heavy element abundances from planetary nebula (PN) spectra provides an exciting opportunity to study the nucleosynthesis occurring in the progenitor asymptotic giant branch (AGB) star. We perform post-processing calculations on AGB models of a large range of mass and metallicity to obtain predictions for the production of neutron-capture elements up to the first s-process peak at strontium. We find that solar metallicity intermediate-mass AGB models provide a reasonable match to the heavy element composition of Type I PNe. Likewise, many of the Se and Kr enriched PNe are well fitted by lower mass models with solar or close-to-solar metallicities. However, those objects most enriched in Krand those PN with sub-solar Se/O ratios are difficult to explain with AGB-nucleosynthesis models. Furthermore, we compute s-process abundance predictions for low-mass AGB models of very low metallicity ([Fe/H]≈−2.3) using both scaled solar and an α-enhanced initial composition. For these models, O is dredged to the surface, which means that abundance ratios measured relative to this element (e.g. X/O) do not provide a reliable measure of initial abundance ratios, or of production within the star owing to internal nucleosynthesis.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 2010

References

Aller, L. H. & Czyzak, S. J., 1983, ApJS, 51, 211CrossRefGoogle Scholar
Boothroyd, A. I. & Sackmann, I.-J., 1999, ApJ, 510, 232CrossRefGoogle Scholar
Busso, M., Gallino, R. & Wasserburg, G. J., 1999, ARA&A, 37, 239Google Scholar
Corradi, R. L. M. & Schwarz, H. E., 1995, A&A, 293, 871Google Scholar
Delgado Inglada, G., Rodríguez, M., Mampaso, A. & Viironen, K., 2009, ApJ, 694, 1335Google Scholar
Dinerstein, H. L. & Geballe, T. R., 2001, ApJ, 562, 515Google Scholar
Dopita, M. A. et al. , 1997, ApJ, 474, 188Google Scholar
Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A. & Limongi, M., 1998, ApJ, 497, 388CrossRefGoogle Scholar
García-Hernández, D. A., García-Lario, P., Plez, B., D'Antona, F., Manchado, A. & Trigo-Rodríguez, J. M., 2006, Sci, 314, 1751Google Scholar
Herwig, F., 2005, ARA&A, 43, 435Google Scholar
Karakas, A. I. & Lattanzio, J. C., 2007, PASA, 24, 103CrossRefGoogle Scholar
Karakas, A. I., Lugaro, M. & Gallino, R., 2007, ApJ, 656, L73CrossRefGoogle Scholar
Karakas, A. I., van Raai, M. A., Lugaro, M., Sterling, N. C. & Dinerstein, H. L., 2009, ApJ, 690, 1130Google Scholar
Lambert, D. L., Smith, V.V., Busso, M., Gallino, R. & Straniero, O., 1995, ApJ, 450, 302CrossRefGoogle Scholar
Leisy, P. & Dennefeld, M., 2006, A&A, 456, 451Google Scholar
Magrini, L., Stanghellini, L. & Villaver, E., 2009, ApJ, 696, 729CrossRefGoogle Scholar
Moe, M. & De Marco, O., 2006, ApJ, 650, 916CrossRefGoogle Scholar
Otsuka, M., Izumiura, H., Tajitsu, A. & Hyung, S., 2008, ApJ, 682, L105CrossRefGoogle Scholar
Perinotto, M., Bencini, C. G., Pasquali, A., Manchado, A., Rodriguez Espinosa, J. M. & Stanga, R., 1999, A&A, 347, 967Google Scholar
Sharpee, B., Zhang, Y., Williams, R., Pellegrini, E., Cavagnolo, K., Baldwin, J. A., Phillips, M. & Liu, X.-W., 2007, ApJ, 659, 1265CrossRefGoogle Scholar
Stanghellini, L., Guerrero, M. A., Cunha, K., Manchado, A. & Villaver, E., 2006, ApJ, 651, 898CrossRefGoogle Scholar
Stanghellini, L., Shaw, R. A., Balick, B. & Blades, J. C., 2000, ApJ, 534, L167CrossRefGoogle Scholar
Sterling, N. C. & Dinerstein, H. L., 2008, ApJS, 174, 158CrossRefGoogle Scholar
Sterling, N. C., Dinerstein, H. L., Bowers, C. W. & Redfield, S., 2005, ApJ, 625, 368CrossRefGoogle Scholar
Truran, J. W. & Iben, I. Jr., 1977, ApJ, 216, 797CrossRefGoogle Scholar
van Winckel, H., 2003, ARA&A, 41, 391Google Scholar
Welty, D. E., Hobbs, L. M., Lauroesch, J. T., Morton, D. C., Spitzer, L. & York, D. G., 1999, ApJS, 124, 465CrossRefGoogle Scholar
Zijlstra, A. A., Gesicki, K., Walsh, J. R., Péquignot, D., van Hoof, P. A. M. & Minniti, D., 2006, MNRAS, 369, 875CrossRefGoogle Scholar