Hostname: page-component-6bb9c88b65-vqtzn Total loading time: 0 Render date: 2025-07-23T01:48:36.822Z Has data issue: false hasContentIssue false

The Galactic Halo Ionising Field

Published online by Cambridge University Press:  05 March 2013

J. Bland-Hawthorn
Affiliation:
Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia; jbh@aaossz.aao.gov.au
P. R. Maloney
Affiliation:
CASA, University of Colorado, Boulder, CO 80309-0389, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There has been much debate in recent decades as to what fraction of ionising photons from star-forming regions in the Galactic disk escape into the halo. The recent detection of the Magellanic Stream in optical line emission at the CTIO 4 m and the AAT 3·9 m telescopes may now provide the strongest evidence that at least some of the radiation escapes the disk completely. We present a simple model to demonstrate that, while the distance to the Magellanic Stream is uncertain, the observed emission measures (εm ≈ 0·5 – 1 cm−6 pc) are most plausibly explained by photoionisation due to hot, young stars. This model requires that the mean Lyman-limit opacity perpendicular to the disk is τLL ≈ 3, and the covering fraction of the resolved clouds is close to unity. Alternative sources (e.g. shock, halo, LMC or metagalactic radiation) contribute negligible ionising flux.

Information

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1997

References

Bland-Hawthorn, J. 1997, PASA, 14, 64 CrossRefGoogle Scholar
Bland-Hawthorn, J., & Maloney, P. R. 1997, ApJ, submittedGoogle Scholar
Burton, W. B. 1988, in Galactic and Extragalactic Astronomy, ed. G. L. Verschuur & K. Kellerman (Dordrecht: Reidel), p. 295 CrossRefGoogle Scholar
de Geus, E. J., Vogel, S. M., Digel, S. W., & Gruendl, R. A. 1993, ApJ, 413, 97 Google Scholar
Domgorgen, H., & Mathis, J.S. 1994, ApJ, 428, 647 CrossRefGoogle Scholar
Dove, J., & Shull, M. 1994, ApJ, 430, 222 Google Scholar
Feast, M. W. 1988, ASP Conf Ser. 4, ed. S. van den Bergh k C. Pritchet (San Francisco: ASP), p. 9 Google Scholar
Feast, M. W., & Walker, A. R. 1987, ARA&A, 25, 345 Google Scholar
Ferguson, A. M. N., Wyse, R. F. G., Gallagher, J. S., & Hunter, D. A. 1996, AJ, 111, 2265 CrossRefGoogle Scholar
Fujimoto, M., & Sofue, Y. 1976, A&A, 47, 263 Google Scholar
Gardiner, L. T., Sawa, T., & Fujimoto, M. 1994, MNRAS, 266, 567 Google Scholar
Hogan, C. J., & Weymann, R. J. 1987, MNRAS, 225, 1P Google Scholar
Hoopes, C. G., Walterbos, R. A. M., & Greenawalt, B. E. 1996, AJ, 112, 1429 Google Scholar
Kent, S. M., Dame, T. M., & Fazio, G. G. 1991, ApJ, 378, 131 CrossRefGoogle Scholar
Leitherer, C., & Heckman, T. M. 1995, ApJS, 96, 9 CrossRefGoogle Scholar
Lin, D. N. C., Jones, B. F., & Klemola, A. R. 1995, ApJ, 439, 652 CrossRefGoogle Scholar
Mathewson, D. S., Cleary, J. D., & Murray, M. N. 1974, ApJ, 190, 291 CrossRefGoogle Scholar
Mathewson, D. S., & Ford, V. L. 1984, in Structure and Evolution of the Magellanic Clouds, IAU Symp., 108, 125 Google Scholar
Miller, W. W., & Cox, D. P. 1993, ApJ, 417, 579 CrossRefGoogle Scholar
Moore, B., & Davis, M. 1994, MNRAS, 270, 209 Google Scholar
Reid, M. 1993, ARA&A, 31, 345 Google Scholar
Reynolds, R. J. 1990, in Galactic and Extragalactic Background Radiation, ed. S. Bowyer & C. Leinert (Dordrecht: Kluwer), p. 157 Google Scholar
Vacca, W. D., Garmany, C. D., & Shull, J. M. 1996, ApJ, 460, 914 Google Scholar
Weiner, B. J., & Williams, T. B. 1996, AJ, 111, 1156 Google Scholar