Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:09:56.325Z Has data issue: false hasContentIssue false

Vitamin A and causes of maternal mortality: association and biological plausibility

Published online by Cambridge University Press:  02 January 2007

Hala Faisel
Affiliation:
PO Box 67, Abbasia, 11381 Cairo, Egypt
Rüdiger Pittrof*
Affiliation:
Maternal and Child Epidemiology Unit, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
*
*Corresponding author: Email rudiger.pittrof@lshtm.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective

To review the association between major causes of maternal mortality and vitamin A, trying to determine if these associations are causal in nature, and to highlight possible biological pathways that may explain vitamin A effects.

Design

Literature review, observational studies and clinical trials. The strength of association was determined by applying Bradford Hill criteria of causality.

Results

In a vitamin A deficient population, vitamin A is essential for adequate treatment of anaemia. While vitamin A does not seem to be capable of preventing uterine atony, obstetric or surgical trauma, which are important causes of haemorrhage, it might be capable of preventing or decreasing coagulopathy. Possible effects on the placenta as regards implantation, site and size are not clear. As regards pregnancy-related infections, vitamin A supplementation can improve wound healing by decreasing fibrosis and increasing transforming growth factor-β (TFG-β). It can increase resistance to infection by increasing mucosal integrity, increasing surface immunoglobulin A (sIgA) and enhancing adequate neutrophil function. If infection occurs, vitamin A can act as an immune enhancer, increasing the adequacy of natural killer (NK) cells and increasing antibody production. β-carotene in its provitamin form can act as an antioxidant by decreasing endothelial cell damage (the pathognomonic feature of pre-eclampsia) and promote the vasodilator effect of nitric oxide that might bring about a better outcome of toxaemia in pregnancy. It is unlikely that vitamin A or β-carotene has an effect on obstructed labour.

Conclusions

Plausible biomedical pathways can only be constructed for obstetric haemorrhage, anaemia in pregnancy, hypertension in pregnancy and pregnancy-related infections. A 40% reduction in the maternal mortality ratio, as observed in Nepal, is unlikely to be solely explained through the aforementioned pathways.

Type
Research Article
Copyright
Copyright © CABI Publishing 2000

References

1Keith, P, West, KP, Joanne Katz, J, et al. Double blind, cluster randomised trial of low dose supplementation with vitamin A or β-carotene on mortality related to pregnancy in Nepal. BMJ 1999 318: 570–5.Google Scholar
2WHO. Mother and Baby Package, Implementing Safe Motherhood in Countries. Document No. WHO/FHE/MSM/94.11. Geneva, World Health Organization, 1994; 2.Google Scholar
3Hathcock, JN, Hattan, DG, Jenkins, MY, et al. Evaluation of vitamin A toxicity. Am. J. Clin. Nutr. 1990; 52: 183202.CrossRefGoogle ScholarPubMed
4Bates, CJ.. Vitamin A. Lancet 1995; 345: 31–5.CrossRefGoogle ScholarPubMed
5Moden, M.Vitamin A in embryonic development. Nutr. Rev. 1990; 52: S3–12.CrossRefGoogle Scholar
6Smeland, S, Bjerknes, T, Malaba, L.Tissue distribution of the receptor for plasma retinol-binding protein. Biochem. J. 1995; 305(2): 419–24.CrossRefGoogle ScholarPubMed
7Dimenstein, R, Trugo, NM, Donangelo, CM, Trugo, LC, Anastacio, AS. Effect of subadequate maternal vitamin-A status on placental transfer of retinol and beta-carotene to the human fetus. Biol. Neonate. 1996; 69(4): 230–4.CrossRefGoogle Scholar
8Sharma, SC, Bonnar, J, Dostalova, . Comparison of blood levels of vitamin A, beta-carotene and vitamin E in abruptio placentae with normal pregnancy. Int. J. Vitam. Nutr. Res. 1986; 56(1): 39.Google ScholarPubMed
9Calzada, C, Bruckdorfer, KR, Rice Evans, CA. The influence of antioxidant nutrients on platelet function in healthy volunteers. Atherosclerosis. 1997; 128(1): 97105.CrossRefGoogle ScholarPubMed
10Lee, JY, Mak, CP, Wang, BJ, Chang, WC. Effects of retinoids on endothelial cell proliferation, prostacyclin production and platelet aggregation. J. Dermatol. Sci. 1992; 3(3): 157–62.Google ScholarPubMed
11Bekyarova, G, Yankova, T, Galunska, B.Increased antioxidant capacity, suppression of free radical damage and erythrocyte aggregatability after combined application of alpha-tocopherol and FC-43 perfluorocarbon emulsion in early postburn period in rats. Artif. Cells Blood Substit. Immobil. Biotechnol. 1996; 24(6): 629–41.CrossRefGoogle Scholar
12Horie, S, Kizaki, K, Ishii, H, Kazama, M.Retinoic acid stimulates expression of thrombomodulin, a cell surface anticoagulant glycoprotein, on human endothelial cells. Differences between up-regulation of thrombomodulin by retinoic acid and cyclic AMP. Biochem. J. 1992; 281(1): 149–54.CrossRefGoogle ScholarPubMed
13Shibakura, M, Koyama, T, Saito, T, et al. Anticoagulant effects of synthetic retinoids mediated via different receptors on human leukemia and umbilical vein endothelial cells. Blood. 1997; 90(4): 1545–51.CrossRefGoogle ScholarPubMed
14Sanders, TA, Vickers, M, Haines, AP. Effect on blood lipids and haemostasis of a supplement of cod-liver oil, rich in eicosapentaenoic and docosahexaenoic acids, in healthy young men. Clin. Sci. 1981; 61(3): 317–24.CrossRefGoogle Scholar
15Thompson, EA, Nelles, L, Collen, D.Effect of retinoic acid on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cells. Eur. J. Biochem. 1991; 201(3): 627–32.CrossRefGoogle ScholarPubMed
16Back, O, Nilsson, TK. Retinoids and fibrinolysis. Acta Derm. Venereol. 1995; 75(4): 290–2.Google ScholarPubMed
17McGanity, WJ, Cannon, RO, Bridgforth, EB, et al. The Vanderbilt cooperative study of maternal and infant nutrition. IV. Relationship of obstetric performance to nutrition. Am. J. Obstet. Gynecol. 1945; 67: 501–27.CrossRefGoogle Scholar
18Edmond, C, Clemmesen, SV. On parental vitamin A treatment of dysaptation (nyctalo-hemeralopia) in some pregnant women. Acta Med. Scand. 1936; 89: 6992.CrossRefGoogle Scholar
19Mikhail, MS, Palan, PR, Basu, J, Anyaegbunam, A, Romney, SL. Decreased beta-carotene levels in exfoliated vaginal epithelial cells in women with vaginal candidiasis. Am. J. Reprod. Immunol. 1994; 32(3): 221–5.CrossRefGoogle ScholarPubMed
20Christian, P, West, KP, Khatry, SK, et al. Night blindness of pregnancy in rural Nepal – nutritional and health risks. Int. J. Epidemiol. 1998; 27(2): 231–7.CrossRefGoogle ScholarPubMed
21Semba, RD. Vitamin A, immunity, and infection. Clin. Infect. Dis. 1994; 19(3): 489–99.CrossRefGoogle ScholarPubMed
22Rosales, FJ, Ritter, SJ, Zolfaghari, R, Smith, JE, Ross, AC. Effects of acute inflammation on plasma retinol, retinol-binding protein, and its mRNA in the liver and kidneys of vitamin A-sufficient rats. J. Lipid Res. 1996; 37(5): 962–71.CrossRefGoogle ScholarPubMed
23Alvarez, JO, Salazar, LE, Kohatsu, J, Miranda, P, Stephensen, CB. Urinary excretion of retinol in children with acute diarrhoea. Am. J. Clin. Nutr. 1995; 61(6): 1273–6.CrossRefGoogle Scholar
24Filteau, SM, Morris, SS, Abbott, RA, et al. Influence of morbidity on serum retinol of children in a community-based study in northern Ghana. Am. J. Clin. Nutr. 1993; 58(2): 192–7.CrossRefGoogle Scholar
25Willumsen, JF, Simmank, K, Filteau, SM, Wagstaff, LA, Tomkins, AM. Toxic damage to the respiratory epithelium induces acute phase changes in vitamin A metabolism without depleting retinol stores of South African children. J. Nutr. 1997; 127(7): 1339–43.CrossRefGoogle Scholar
26Szabo, G, Puppolo, M, Verma, B, Catalano, D.Regulatory potential of ethanol and retinoic acid on human monocyte functions. Alcohol. Clin. Exp. Res. 1994; 18(3): 548–54.CrossRefGoogle ScholarPubMed
27Twining, SS, Schulte, DP, Wilson, PM, Fish, BL, Moulder, JE. Vitamin A deficiency alters rat neutrophil function. J. Nutr. 1997; 127(4): 558–65.CrossRefGoogle ScholarPubMed
28Semba, RD. The role of vitamin A and related retinoids in immune function. Nutr. Rev. 1998; 56(1 part 2): S38–48.Google ScholarPubMed
29Zhao, Z, Ross, AC. Retinoic acid repletion restores the number of leukocytes and their subsets and stimulates natural cytotoxicity in vitamin A-deficient rats. J. Nutr. 1995; 125(8): 2064–73.CrossRefGoogle ScholarPubMed
30Hussey, G, Huges, J, Potgieter, S, et al. Vitamin A status and supplementation and its effects on immunity in children with Aids. Abstracts of the XVII International Vitamin A Consultative Group Meeting, Guatemala City. Washington, DC: International Life Science Institute, 1996; 6 (abstract).Google Scholar
31Buck, J, Ritter, G, Dannecker, L, et al. Retinol is essential for growth of activated human B cells. J. Exp. Med. 1990; 171(5): 1613–24.CrossRefGoogle ScholarPubMed
32Blomhoff, HK, Smeland, EB, Erikstein, B, et al. Vitamin A is a key regulator for cell growth, cytokine production, and differentiation in normal B cells. J. Biol. Chem. 1992; 267(33): 23988–92.CrossRefGoogle ScholarPubMed
33Ballow, M, Wang, W, Xiang, S.Modulation of B-cell immunoglobulin synthesis by retinoic acid. Clin. Immunol. Immunopathol. 1996; 80(3/2): S73–81.CrossRefGoogle ScholarPubMed
34Garbe, A, Buck, J, Hammerling, U.Retinoids are important cofactors in T cell activation. J. Exp. Med. 1992; 176(1): 109–17.CrossRefGoogle ScholarPubMed
35Semba, RD, Muhilal, , Scott, AL. Effect of vitamin A supplementation on immunoglobulin G subclass responses to tetanus toxoid in children. Clin. Diagn. Lab. Immunol. 1994; 1(2): 172–5.CrossRefGoogle ScholarPubMed
36Pasatiempo, AM, Bowman, TA, Taylor, CE, Ross, AC. Vitamin A depletion and repletion: effects on antibody response to the capsular polysaccharide of Streptococcus pneumoniae, type III (SSS-III). Am. J. Clin. Nutr. 1989; 49(3): 501–10.CrossRefGoogle Scholar
37Basu, RJ, Arulanantham, R.A study of serum protein and retinol levels in pregnancy and toxaemia of pregnancy in women of low socio-economic status. Indian J. Med. Res. 1973; 61(4): 589–95.Google ScholarPubMed
38Jendryczko, A, Drozdz, M.Plasma retinol, beta-carotene and vitamin E levels in relation to the future risk of pre-eclampsia. Zentralbl. Gynakol. 1989; 111(16): 1121–3.Google Scholar
39Mikhail, MS, Anyaegbunam, A, Garfinkel, D, et al. Preeclampsia and antioxidant nutrients: decreased plasma levels of reduced ascorbic acid, alpha-tocopherol, and beta-carotene in women with preeclampsia. Am. J. Obstet. Gynecol. 1994; 171(1): 150–7.CrossRefGoogle ScholarPubMed
40Ziari, SA, Mireles, VL, Cantu, CG, et al. Serum vitamin A, vitamin E, and beta-carotene levels in preeclamptic women in northern Nigeria. Am. J. Perinatol. 1996; 13(5): 287–91.CrossRefGoogle ScholarPubMed
41Koskinen, T, Valtonen, P, Lehtovaara, I, Tuimal, R.Amniotic fluid retinol concentration in late pregnancy. Biol. Neonate. 1986; 49: 81–4.CrossRefGoogle ScholarPubMed
42Studd, JW, Shaw, RW, Bailey, DE. Maternal and fetal serum protein concentration in normal pregnancy and pregnancy complicated by proteinuric pre-eclampsia. Am. J. Obstet. Gynecol. 1972; 114(5): 582–8.CrossRefGoogle ScholarPubMed
43Choudhuri, SK. Serum protein changes in toxemia of pregnancy. J. Indian Med. Assoc. 1969; 53: 334–44.Google Scholar
44Wickens, D, Wilkins, MH, Lunec, J, Ball, G, Dormandy, TL. Free radical oxidation. peroxidation products in plasma in normal and abnormal pregnancy. Ann. Clin. Biochem. 1981; 18(3): 158–62.CrossRefGoogle ScholarPubMed
45Shaarawy, M, Aref, A, Salem, ME, Sheiba, M.Radical-scavenging antioxidants in pre-eclampsia and eclampsia. Int. J. Gynaecol. Obstet. 1998; 60(2): 123–8.CrossRefGoogle ScholarPubMed
46Poranen, AK, Ekblad, U, Uotila, P, Ahotupa, M.Lipid peroxidation and antioxidants in normal and pre-eclamptic pregnancies. Placenta 1996; 17(7): 401–5.CrossRefGoogle ScholarPubMed
47Wang, Y, Walsh, SW. Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas. J. Soc. Gynecol. Investig. 1996; 3(4): 179–84.CrossRefGoogle ScholarPubMed
48Alexa, ID, Jerca, L, Gheorghita, V, et al. The role of lipid peroxidation and of the antioxidant systems in normal pregnancy and in pre-eclampsia. Rev. Med. Chir. Soc. Med. Nat. Iasi. 1996; 100(3/4): 84–9.Google ScholarPubMed
49Uotila, JT, Tuimala, RJ, Aarnio, TM, Pyykko, KA, Ahotupa, MO. Findings on lipid peroxidation and antioxidant function in hypertensive complications of pregnancy. Br. J. Obstet. Gynaecol. 1993; 100(3): 270–6.CrossRefGoogle ScholarPubMed
50Davidge, ST, Hubel, CA, Brayden, RD, Capeless, EC, McLaughlin, MK. Sera antioxidant activity in uncomplicated and preeclamptic pregnancies. Obstet. Gynecol. 1992; 79(6): 897901.Google ScholarPubMed
51Cueto, SM, Romney, AD, Wang, Y, Walsh, SW. Beta-carotene attenuates peroxide-induced vasoconstriction in the human placenta. J. Soc. Gynecol. Investig. 1997; 4(2): 6471.CrossRefGoogle ScholarPubMed
52Kingdom, JSibley, C. The placenta. In: Hillier, SG, Kitchener, HC, Neilson, JP, eds. Scientific Essentials of Reproductive Medicine. London: WB Saunders, 1996; 312–28.Google Scholar
53Keaney, JF Jr, Gaziano, JM, Xu, A, et al. Dietary antioxidants preserve endothelium-dependent vessel relaxation in cholesterol-fed rabbits. Proc. Natl. Acad. Sci. USA 1993; 90(24): 11880–4.CrossRefGoogle ScholarPubMed
54Reaven, PD, Ferguson, E, Navab, M, Powell, FL. Susceptibility of human LDL to oxidative modification. Effects of variations in beta-carotene concentration and oxygen tension. Arterioscler. Thromb. 1994; 14(7): 1162–9.CrossRefGoogle ScholarPubMed
55Gilligan, DM, Sack, MN, Guetta, V, et al. Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilatation in patients with hypercholesterolemia. J. Am. Coll. Cardiol. 1994; 24(7): 1611–17.CrossRefGoogle ScholarPubMed
56Chappell, LC, Seed, PT, Briley, AL, et al. Effect of antioxidants on the occurrence of pre-eclampsia in women at increased risk: a randomised trial. Lancet 1999; 354: 810–16.CrossRefGoogle Scholar
57Many, A, Hubel, CA, Roberts, JM. Hyperuricemia and xanthine oxidase in preeclampsia, revisited. Am. J. Obstet. Gynecol. 1996; 174(1): 288–91.CrossRefGoogle ScholarPubMed
58Brandt, RB, Mueller, DG, Schroeder, JR, et al. Serum vitamin A in premature and term neonates. J. Pediatr. 1978; 92(1): 101–4.CrossRefGoogle ScholarPubMed
59Shenai, JP, Chytil, F, Jhaveri, A, Stahlman, MT. Plasma vitamin A and retinol-binding protein in premature and term neonates. J. Pediatr. 1981; 99(2): 302–5.CrossRefGoogle ScholarPubMed
60Navarro, J, Causse, MB, Desquilbet, N, Herve, F, Lallemand, D.The vitamin status of low birth weight infants and their mothers. J. Pediatr. Gastroenterol. Nutr. 1984; 3(5): 744–8.Google ScholarPubMed
61Shah, RS, Rajalakshmi, R.Vitamin A status of the newborn in relation to gestational age, body weight, and maternal nutritional status. Am. J. Clin. Nutr. 1984; 40(4): 794800.CrossRefGoogle ScholarPubMed
62Yassai, MB, Malek, F.Newborns vitamin A in relation to sex and birth weight. J. Trop. Pediatr. 1989; 35(5): 247–9.Google ScholarPubMed
63Ghebremeskel, K, Burns, L, Burden, TJ, et al. Vitamin A and related essential nutrients in cord blood: relationships with anthropometric measurements at birth. Early Hum. Dev. 1994; 39(3): 177–88.CrossRefGoogle ScholarPubMed
64Dison, PJ, Lockitch, G, Halstead, AC, et al. Influence of maternal factors on cord and neonatal plasma micronutrient levels. Am. J. Perinatol. 1993; 10(1): 30–5.CrossRefGoogle ScholarPubMed
65Rondo, PH, Abbott, R, Rodrigues, LC, Tomkins, AM. Vitamin A, folate, and iron concentrations in cord and maternal blood of intra-uterine growth retarded and appropriate birth weight babies. Eur. J. Clin. Nutr. 1995; 49(6): 391–9.Google ScholarPubMed
66Panth, M, Shatrugna, V, Yasodhara, P, Sivakumar, B.Effect of vitamin A supplementation on haemoglobin and vitamin A levels during pregnancy. Br. J. Nutr. 1990; 64(2): 351–8.CrossRefGoogle ScholarPubMed
67Garcia Casal, MN, Layrisse, M, Solano, L, et al. Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J. Nutr. 1998; 128(3): 646–50.CrossRefGoogle ScholarPubMed
68Vijayalakshami, P, Lakshami, RN. Effect of vitamin A and iron supplementation on serum levels of these nutrients among expectant mothers. Int. J. Nutr. Diet. 1983; 20: 149–52.Google Scholar
69Suharno, D, West, CE, Muhilal, , et al. Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia. Lancet 1993; 342: 1225–8.CrossRefGoogle ScholarPubMed
70Wagner, KH. Die experimentelle Avitaminose A beim Menschen. Hoppe Seyler. Z. Physiol. Chem. 1940; 264: 135. (Cited in eds Hodges RE, Sauberlich HE, Canham JE et al. Hematopiotic studies in vitamin A deficiency. Am. J. Clin. Nutr. 1978; 31: 876–85.)CrossRefGoogle Scholar
71Blomhoff, HK, Someland, EB. Role of retinoids in normal hematopoiesis and the immune system. In: Blomhoff, R ed. Vitamin A in Health and Disease. New York: Marcel Dekker, 1994; 455–9.CrossRefGoogle Scholar