This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/psychometrika.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Neuroimaging studies, such as the Human Connectome Project (HCP), often collect multifaceted data to study the human brain. However, these data are often analyzed in a pairwise fashion, which can hinder our understanding of how different brain-related measures interact. In this study, we analyze the multi-block HCP data using data integration via analysis of subspaces (DIVAS). We integrate structural and functional brain connectivity, substance use, cognition, and genetics in an exhaustive five-block analysis. This gives rise to the important finding that genetics is the single data modality most predictive of brain connectivity, outside of brain connectivity itself. Nearly 14% of the variation in functional connectivity (FC) and roughly 12% of the variation in structural connectivity (SC) is attributed to shared spaces with genetics. Moreover, investigations of shared space loadings provide interpretable associations between particular brain regions and drivers of variability. Novel Jackstraw hypothesis tests are developed for the DIVAS framework to establish statistically significant loadings. For example, in the (FC, SC, and substance use) subspace, these novel hypothesis tests highlight largely negative functional and structural connections suggesting the brain’s role in physiological responses to increased substance use. Our findings are validated on genetically relevant subjects not studied in the main analysis.