Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T10:46:40.212Z Has data issue: false hasContentIssue false

Three-Mode Factor Analysis by Means of Candecomp/Parafac

Published online by Cambridge University Press:  01 January 2025

Alwin Stegeman*
Affiliation:
Heymans Institute for Psychological Research, University of Groningen
Tam T. T. Lam
Affiliation:
Heymans Institute for Psychological Research, University of Groningen
*
Requests for reprints should be sent to Alwin Stegeman, Heymans Institute for Psychological Research, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands. E-mail: a.w.stegeman@rug.nl

Abstract

A three-mode covariance matrix contains covariances of N observations (e.g., subject scores) on J variables for K different occasions or conditions. We model such an JK×JK covariance matrix as the sum of a (common) covariance matrix having Candecomp/Parafac form, and a diagonal matrix of unique variances. The Candecomp/Parafac form is a generalization of the two-mode case under the assumption of parallel factors. We estimate the unique variances by Minimum Rank Factor Analysis. The factors can be chosen oblique or orthogonal. Our approach yields a model that is easy to estimate and easy to interpret. Moreover, the unique variances, the factor covariance matrix, and the communalities are guaranteed to be proper, a percentage of explained common variance can be obtained for each variable-condition combination, and the estimated model is rotationally unique under mild conditions. We apply our model to several datasets in the literature, and demonstrate our estimation procedure in a simulation study.

Type
Original Paper
Copyright
Copyright © 2013 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acar, E., Yener, B. (2009). Unsupervised multiway data analysis: a literature survey. IEEE Transactions on Knowledge and Data Engineering, 21, 115CrossRefGoogle Scholar
Bentler, P.M., Lee, S.-Y. (1978). Statistical aspects of a three-mode factor analysis model. Psychometrika, 43, 343352CrossRefGoogle Scholar
Bentler, P.M., Lee, S.-Y. (1979). A statistical development of three-mode factor analysis. British Journal of Mathematical and Statistical Psychology, 32, 87104CrossRefGoogle Scholar
Bloxom, B. (1968). A note on invariance in three-mode factor analysis. Psychometrika, 33, 347350CrossRefGoogle ScholarPubMed
Bro, R., Harshman, R.A., Sidiropoulos, N.D., Lundy, M.E. (2009). Modeling multi-way data with linearly dependent loadings. Journal of Chemometrics, 23, 324340CrossRefGoogle Scholar
Browne, M.W. (1984). The decomposition of multitrait-multimethod matrices. British Journal of Mathematical and Statistical Psychology, 37, 121CrossRefGoogle ScholarPubMed
Campbell, D.T., Fiske, D.W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81105CrossRefGoogle ScholarPubMed
Carroll, J.D., Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart–Young decomposition. Psychometrika, 35, 283319CrossRefGoogle Scholar
Ceulemans, E., Kiers, H.A.L. (2006). Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. British Journal of Mathematical and Statistical Psychology, 59, 133150CrossRefGoogle ScholarPubMed
Comon, P., De Lathauwer, L. (2010). Algebraic identification of under-determined mixtures. In Comon, P., Jutten, C. (Eds.), Handbook of blind source separation: independent component analysis and applications, San Diego: Academic Press 325366CrossRefGoogle Scholar
De Almeida, A.L.F., Favier, G., Mota, J.C.M. (2008). Constrained tensor modeling approach to blind multiple-antenna CDMA schemes. IEEE Transactions on Signal Processing, 56, 24172428CrossRefGoogle Scholar
De Almeida, A.L.F., Favier, G., Mota, J.C.M. (2008). A constrained factor decomposition with application to MIMO antenna systems. IEEE Transactions on Signal Processing, 56, 24292442CrossRefGoogle Scholar
De Lathauwer, L. (2010). Algebraic methods after prewhitening. In Comon, P., Jutten, C. (Eds.), Handbook of blind source separation: independent component analysis and applications, San Diego: Academic Press 155178CrossRefGoogle Scholar
De Silva, V., Lim, L.-H. (2008). Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM Journal on Matrix Analysis and Applications, 30, 10841127CrossRefGoogle Scholar
Eckart, C., Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1, 211218CrossRefGoogle Scholar
Eid, M. (2000). A multitrait-multimethod model with minimal assumptions. Psychometrika, 65, 241261CrossRefGoogle Scholar
Eid, M., Nussbeck, F.W., Geiser, C., Cole, D.A., Gollwitzer, M., Lischetzke, T. (2008). Structural equation modeling of multitrait-multimethod data: different models for different types of methods. Psychological Methods, 13, 230253CrossRefGoogle ScholarPubMed
Harshman, R.A. (1970). Foundations of the Parafac procedure: models and conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics, 16, 184Google Scholar
Harshman, R.A., Lundy, M.E. (1984). Data preprocessing and the extended Parafac model. In Law, H.G., Snyder, C.W. Jr., Hattie, J.A., McDonald, R.P. (Eds.), Research methods for multimode data analysis, New York: Praeger 216284Google Scholar
Harshman, R.A. (2004). The problem and nature of degenerate solutions or decompositions of 3-way arrays. Talk at the tensor decompositions workshopGoogle Scholar
Hitchcock, F.L. (1927). The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics, 6, 164189CrossRefGoogle Scholar
Hitchcock, F.L. (1927). Multiple invariants and generalized rank of a p-way matrix or tensor. Journal of Mathematics and Physics, 7, 3970CrossRefGoogle Scholar
Jöreskog, K.G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239251CrossRefGoogle Scholar
Jöreskog, K.G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36, 109133CrossRefGoogle Scholar
Kiers, H.A.L. (1998). Three-way SIMPLIMAX for oblique rotation of the three-mode factor analysis core to simple structure. Computational Statistics and Data Analysis, 28, 307324CrossRefGoogle Scholar
Kiers, H.A.L. (1998). Joint orthomax rotation of the core and component matrices resulting from three-mode principal components analysis. Journal of Classification, 15, 245263CrossRefGoogle Scholar
Kiers, H.A.L., Kroonenberg, P.M., Ten Berge, J.M.F. (1992). An efficient algorithm for TUCKALS3 on data with large number of observation units. Psychometrika, 57, 415422CrossRefGoogle Scholar
Kiers, H.A.L., Takane, Y., Ten Berge, J.M.F. (1996). The analysis of multitrait-multimethod matrices via constrained component analysis. Psychometrika, 61, 601628CrossRefGoogle Scholar
Kiers, H.A.L., Van Mechelen, I. (2001). Three-way component analysis: principles and illustrative application. Psychological Methods, 6, 84110CrossRefGoogle ScholarPubMed
Kolda, T.G., Bader, B.W. (2009). Tensor decompositions and applications. SIAM Review, 51, 455500CrossRefGoogle Scholar
Krijnen, W.P., Dijkstra, T.K., Stegeman, A. (2008). On the non-existence of optimal solutions and the occurrence of “degeneracy” in the Candecomp/Parafac model. Psychometrika, 73, 431439CrossRefGoogle ScholarPubMed
Kroonenberg, P.M., De Leeuw, J. (1980). Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 45, 6997CrossRefGoogle Scholar
Kroonenberg, P.M., Oort, F.J. (2003). Three-mode analysis of multimode covariance matrices. British Journal of Mathematical and Statistical Psychology, 56, 305335CrossRefGoogle ScholarPubMed
Kroonenberg, P.M. (2008). Wiley series in probability and statistics, Hoboken: WileyGoogle Scholar
Kruskal, J.B. (1977). Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics. Linear Algebra and Its Applications, 18, 95138CrossRefGoogle Scholar
Kruskal, J.B., Harshman, R.A., Lundy, M.E. (1989). How 3-MFA data can cause degenerate Parafac solutions, among other relationships. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis, Amsterdam: North-Holland 115121Google Scholar
Lipkus, I.M., Dalbert, C., Siegler, I.C. (1996). The importance of distinguishing the belief in a just world for self versus for others: implications for psychological well-being. Personality and Social Psychology Bulletin, 22, 666677CrossRefGoogle Scholar
Liu, X., Sidiropoulos, N.D. (2001). Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays. IEEE Transactions on Signal Processing, 49, 20742086Google Scholar
Lorenzo-Seva, U., Ten Berge, J.M.F. (2006). Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 2, 5764CrossRefGoogle Scholar
Millsap, R.E. (1992). Sufficient conditions for rotational uniqueness in the additive MTMM model. British Journal of Mathematical and Statistical Psychology, 45, 125138CrossRefGoogle Scholar
Paatero, P. (2000). Construction and analysis of degenerate Parafac models. Journal of Chemometrics, 14, 2852993.0.CO;2-1>CrossRefGoogle Scholar
Smilde, A., Bro, R., Geladi, P. (2004). Multi-way analysis: applications in the chemical sciences, Chichester: WileyCrossRefGoogle Scholar
Sočan, G. (2003). The incremental value of minimum rank factor analysis. Ph.D. Thesis, Department of Psychometrics & Statistics, University of Groningen, Groningen, The Netherlands. Google Scholar
Stegeman, A. (2006). Degeneracy in Candecomp/Parafac explained for p×p×2 arrays of rank p+1 or higher. Psychometrika, 71, 483501CrossRefGoogle Scholar
Stegeman, A. (2007). Degeneracy in Candecomp/Parafac explained for several three-sliced arrays with a two-valued typical rank. Psychometrika, 72, 601619CrossRefGoogle ScholarPubMed
Stegeman, A. (2008). Low-rank approximation of generic p×q×2 arrays and diverging components in the Candecomp/Parafac model. SIAM Journal on Matrix Analysis and Applications, 30, 9881007CrossRefGoogle Scholar
Stegeman, A. (2009). Using the simultaneous generalized Schur decomposition as a Candecomp/Parafac algorithm for ill-conditioned data. Journal of Chemometrics, 23, 385392CrossRefGoogle Scholar
Stegeman, A. (2012). Candecomp/Parafac—from diverging components to a decomposition in block terms. SIAM Journal on Matrix Analysis and Applications, 33, 291316CrossRefGoogle Scholar
Stegeman, A., Sidiropoulos, N.D. (2007). On Kruskal’s uniqueness condition for the Candecomp/Parafac decomposition. Linear Algebra and Its Applications, 420, 540552CrossRefGoogle Scholar
Stegeman, A., de Almeida, A.L.F. (2009). Uniqueness conditions for constrained three-way factor decompositions with linearly dependent loadings. SIAM Journal on Matrix Analysis and Applications, 31, 14691490CrossRefGoogle Scholar
Stegeman, A., Lam, T.T.T. (2012). Improved uniqueness conditions for canonical tensor decompositions with linearly dependent loadings. SIAM Journal on Matrix Analysis and Applications, 33, 12501271CrossRefGoogle Scholar
Ten Berge, J.M.F., Kiers, H.A.L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56, 309315CrossRefGoogle Scholar
Tendeiro, J.N., Ten Berge, J.M.F., Kiers, H.A.L. (2009). Simplicity transformations for three-way arrays with symmetric slices, and applications to Tucker-3 models with sparse core arrays. Linear Algebra and Its Applications, 430, 924940CrossRefGoogle Scholar
Tucker, L.R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 279311CrossRefGoogle ScholarPubMed
Widaman, K.F. (1985). Hierarchically nested covariance structure models for multitrait-multimethod data. Applied Psychological Measurement, 9, 126CrossRefGoogle Scholar
Wothke, W. (1996). Models for multitrait-multimethod matrix analysis. In Marcoulides, G.A., Schumacker, R.E. (Eds.), Advanced structural equation modeling: issues and techniques, Mahwah: Erlbaum 756Google Scholar