Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:49:14.119Z Has data issue: false hasContentIssue false

A Taxonomy of Latent Structure Assumptions for Probability Matrix Decomposition Models

Published online by Cambridge University Press:  01 January 2025

Michel Meulders*
Affiliation:
Katholieke Universiteit Leuven
Paul De Boeck
Affiliation:
Katholieke Universiteit Leuven
Iven Van Mechelen
Affiliation:
Katholieke Universiteit Leuven
*
Requests for reprints should be sent to Department of Psychology, Tiensestraat 102, B-3000 Leuven, BELGIUM. E-Mail: Michel.Meulders@psy.kuleuven.ac.be

Abstract

A taxonomy of latent structure assumptions (LSAs) for probability matrix decomposition (PMD) models is proposed which includes the original PMD model (Maris, De Boeck, & Van Mechelen, 1996) as well as a three-way extension of the multiple classification latent class model (Maris, 1999). It is shown that PMD models involving different LSAs are actually restricted latent class models with latent variables that depend on some external variables. For parameter estimation a combined approach is proposed that uses both a mode-finding algorithm (EM) and a sampling-based approach (Gibbs sampling). A simulation study is conducted to investigate the extent to which information criteria, specific model checks, and checks for global goodness of fit may help to specify the basic assumptions of the different PMD models. Finally, an application is described with models involving different latent structure assumptions for data on hostile behavior in frustrating situations.

Type
Articles
Copyright
Copyright © 2003 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Note: The research reported in this paper was partially supported by the Fund for Scientific Research-Flanders (Belgium) (project G.0207.97 awarded to Paul De Boeck and Iven Van Mechelen), and the Research Fund of K.U. Leuven (F/96/6 fellowship to Andrew Gelman, OT/96/10 project awarded to Iven Van Mechelen and GOA/2000/02 awarded to Paul De Boeck and Iven Van Mechelen). We thank Marcel Croon and Kristof Vansteelandt for commenting on an earlier draft of this paper.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B.N., Csaki, F. (Eds.), Second international symposium on information theory (pp. 271281). Budapest: Academiai KiadoGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723CrossRefGoogle Scholar
Bayarri, M. J., Berger, J. O. (2000). P-values for composite null models. Journal of the American Statistical Association, 95, 11271142Google Scholar
Candel, M. J. J. M., Maris, E. (1997). Perceptual analysis of two-way two-mode frequency data: Probability matrix decomposition and two alternatives. International Journal of Research in Marketing, 14, 321339CrossRefGoogle Scholar
Carlin, B.P., Louis, T.A. (1996). Bayes and empirical Bayes methods for data analysis. London: Chapman & HallGoogle Scholar
Celeux, G., Hurn, M., Robert, C. P. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957970CrossRefGoogle Scholar
Cowles, K., Carlin, B. P. (1996). Markov Chain Monte Carlo convergence diagnostics: A comparative review. Journal of the American Statistical Association, 91, 883904CrossRefGoogle Scholar
Cressie, N.A.C., Read, T.R.C. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society, 46, 440464CrossRefGoogle Scholar
De Boeck, P. (1997). Feature-based classification models with a dominance rule. Proceedings of the Biennial Sessions of the Bulletin of the International Statistical Institute (pp. 389392). Istanbul: International Statistical InstituteGoogle Scholar
de Bonis, M., De Boeck, P., Pérez-Diaz, F., Nahas, M. (1999). A two-process theory of facial perception of emotions. Life Sciences, 322, 669675Google ScholarPubMed
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, 39, 138CrossRefGoogle Scholar
Efron, B., Tibshirani, R.J. (1993). An introduction to the bootstrap. New York, NY: Chapmann & HallCrossRefGoogle Scholar
Endler, N.S., Hunt, J.M. (1968). S-R inventories of hostility and comparisons of the proportions of variance from persons, behaviors, and situations for hostility and anxiousness. Journal of Personality and Social Psychology, 9, 309315CrossRefGoogle Scholar
Formann, A.K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476486CrossRefGoogle Scholar
Gelfand, A.E., Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398409CrossRefGoogle Scholar
Gelman, A., Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457472CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B. (1995). Bayesian data analysis. London: Chapman & HallCrossRefGoogle Scholar
Gelman, A., Meng, X.M., Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 4, 733807Google Scholar
Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721741CrossRefGoogle ScholarPubMed
Goodman, L.A. (1974). Exploratory latent structure analysis using both identifiable and unidentifiable models. Biometrika, 61, 215231CrossRefGoogle Scholar
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187212CrossRefGoogle Scholar
Maris, E., De Boeck, P., Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 729CrossRefGoogle Scholar
McLachlan, G.J., Basford, K.E. (1988). Mixture models. New York, NY: Marcel DekkerGoogle ScholarPubMed
Meng, X.L. (1994). Posterior predictive p-values. The Annals of Statistics, 22, 11421160CrossRefGoogle Scholar
Meulders, M. (2000). Probabilistic feature models for psychological frequency data: A Bayesian approach. Belgium: University of LeuvenGoogle Scholar
Meulders, M., De Boeck, P., Van Mechelen, I. (2001). Probability matrix decomposition models and main-effects generalized linear models for the analysis of replicated binary associations. Computational Statistics and Data Analysis, 38, 217233CrossRefGoogle Scholar
Meulders, M., De Boeck, P., Van Mechelen, I. (2002). Rater classification on the basis of latent features in responding to situations. In Gaul, W., Ritter, G. (Eds.), Classification, automation, and new media (pp. 453461). Berlin: Springer-VerlagCrossRefGoogle Scholar
Meulders, M., De Boeck, P., Van Mechelen, I., & Gelman, A. (2000) Hierarchical extensions of probability matrix decomposition models. Manuscript submitted for publication.Google Scholar
Meulders, M., De Boeck, P., Van Mechelen, I., Gelman, A., Maris, E. (2001). Bayesian inference with probability matrix decomposition models. Journal of Educational and Behavioral Statistics, 26, 153179CrossRefGoogle Scholar
Raftery, A.E. (1986). A note on Bayes factors for log-linear contingency table models with vague prior information. Journal of the Royal Statistical Society, 48, 249250CrossRefGoogle Scholar
Robins, J.M., Van Der Vaart, A., Ventura, V. (2000). Asymptotic distribution of p-values in composite null models. Journal of the Statistical Association, 95, 11431172Google Scholar
Rubin, D.B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 11511172CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimensions of a model. Annals of Statistics, 6, 461464CrossRefGoogle Scholar
Spiegelhalter, D.J., Best, N.G., & Carlin, B.P. (1998). Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models. Manuscript submitted for publication.Google Scholar
Spiegelhalter, D.J., Thomas, A., Best, N., Gilks, W.R. (1995). BUGS: Bayesian inference using Gibbs sampling, Version 0.50. Cambridge, U.K.: Cambridge University, Institute of Public Health, Medical Research Council Biostatistics UnitGoogle Scholar
Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society, 62, 795809CrossRefGoogle Scholar
Tanner, M.A., Wong, W.H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82, 528540CrossRefGoogle Scholar
Vansteelandt, K. (1999). A formal model for the competency-demand hypothesis. European Journal of Personality, 13, 4294423.0.CO;2-R>CrossRefGoogle Scholar
Vermunt, J.K. (1997). Log-linear models for event histories. Thousand Oaks, CA: SageGoogle Scholar
Von Davier, M. (1997). Bootstrapping goodness-of-fit statistics for sparse categorical data: Results of a Monte Carlo study. Methods of Psychological Research Online, 2, 2948Google Scholar