Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T04:44:00.489Z Has data issue: false hasContentIssue false

A Systematic Study into the Factors that Affect the Predictive Accuracy of Multilevel VAR(1) Models

Published online by Cambridge University Press:  01 January 2025

Ginette Lafit*
Affiliation:
KU Leuven – University of Leuven
Kristof Meers
Affiliation:
KU Leuven – University of Leuven
Eva Ceulemans
Affiliation:
KU Leuven – University of Leuven
*
Correspondence should be made to Ginette Lafit, Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium. Email: ginette.lafit@kuleuven.be

Abstract

The use of multilevel VAR(1) models to unravel within-individual process dynamics is gaining momentum in psychological research. These models accommodate the structure of intensive longitudinal datasets in which repeated measurements are nested within individuals. They estimate within-individual auto- and cross-regressive relationships while incorporating and using information about the distributions of these effects across individuals. An important quality feature of the obtained estimates pertains to how well they generalize to unseen data. Bulteel and colleagues (Psychol Methods 23(4):740–756, 2018a) showed that this feature can be assessed through a cross-validation approach, yielding a predictive accuracy measure. In this article, we follow up on their results, by performing three simulation studies that allow to systematically study five factors that likely affect the predictive accuracy of multilevel VAR(1) models: (i) the number of measurement occasions per person, (ii) the number of persons, (iii) the number of variables, (iv) the contemporaneous collinearity between the variables, and (v) the distributional shape of the individual differences in the VAR(1) parameters (i.e., normal versus multimodal distributions). Simulation results show that pooling information across individuals and using multilevel techniques prevent overfitting. Also, we show that when variables are expected to show strong contemporaneous correlations, performing multilevel VAR(1) in a reduced variable space can be useful. Furthermore, results reveal that multilevel VAR(1) models with random effects have a better predictive performance than person-specific VAR(1) models when the sample includes groups of individuals that share similar dynamics.

Type
Theory and Methods
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asparouhov, T.,Hamaker, E. L., &Muthén, B.(2018).Dynamic structural equation models.Structural Equation Modeling: A Multidisciplinary Journal,25(3),359388.CrossRefGoogle Scholar
Babyak, M. A.(2004).What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models.Psychosomatic Medicine,66(3),411421.Google Scholar
Barr, D. J.,Levy, R.,Scheepers, C., &Tily, H. J.(2013).Random effects structure for confirmatory hypothesis testing: Keep it maximal.Journal of Memory and Language,68(3),255278.CrossRefGoogle ScholarPubMed
Bates, D., Kelman, T., Simon, A. B., Noack, A., Hatherly, M., & Bouchet-Valat, M. (2016). Dmbates/Mixedmodels.Jl: Drop Julia V0.4.X and earlier support. Zenodo.Google Scholar
Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015a). Parsimonious mixed models. arXiv preprint arXiv:1506.04967.Google Scholar
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015b). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48.CrossRefGoogle Scholar
Bezanson, J.,Edelman, A.,Karpinski, S., &Shah, V. B.(2017).Julia: A fresh approach to numerical computing.SIAM Review,59(1),6898.CrossRefGoogle Scholar
Borsboom, D., &Cramer, A. O.(2013).Network analysis: An integrative approach to the structure of psychopathology.Annual Review of Clinical Psychology,9 91121.CrossRefGoogle Scholar
Bringmann, L. F.,Pe, M. L.,Vissers, N. Ceulemans, E.,Borsboom, D.,Vanpaemel, W., &Kuppens, P.(2016).Assessing temporal emotion dynamics using networks.Assessment,23(4),425435.CrossRefGoogle ScholarPubMed
Bringmann, L. F.,Vissers, N.,Wichers, M.,Geschwind, N.,Kuppens, P.,Peeters, F., &Tuerlinckx, F.(2013).A network approach to psychopathology: New insights into clinical longitudinal data.PLoS ONE,8(4),e60188.CrossRefGoogle ScholarPubMed
Brose, A.,Voelkle, M. C.,Lövdén, M.,Lindenberger, U., &Schmiedek, F.(2015).Differences in the between-person and within-person structures of affect are a matter of degree.European Journal of Personality,29(1),5571.CrossRefGoogle Scholar
Browne, M. W., &Nesselroade, J. R.(2005).Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models.Maydeu-Olivares, A., &McArdle, J. J. Contemporary psychometrics: A festschrift for Roderick P. McDonald,Mahwah, NJ:Lawrence Erlbaum Associates.415452.Google Scholar
Bulteel, K.,Mestdagh, M.,Tuerlinckx, F., &Ceulemans, E.(2018).VAR (1) based models do not always outpredict AR (1) models in typical psychological applications.Psychological Methods,23(4),740756.CrossRefGoogle Scholar
Bulteel, K.,Tuerlinckx, F. Brose, A., &Ceulemans, E.(2016).Clustering vector autoregressive models: Capturing qualitative differences in within-person dynamics.Frontiers in Psychology,7,1540.CrossRefGoogle ScholarPubMed
Bulteel, K.,Tuerlinckx, F.,Brose, A., &Ceulemans, E.(2016).Using raw VAR regression coefficients to build networks can be misleading.Multivariate Behavioral Research,51(2–3),330344.CrossRefGoogle ScholarPubMed
Bulteel, K.,Tuerlinckx, F.,Brose, A., &Ceulemans, E.(2018).Improved insight into and prediction of network dynamics by combining VAR and dimension reduction.Multivariate Behavioral Research,53(6),853875.CrossRefGoogle ScholarPubMed
Campbell, J. Y., &Thompson, S. B.(2008).Predicting excess stock returns out of sample: Can anything beat the historical average?.The Review of Financial Studies,21(4),15091531.CrossRefGoogle Scholar
Cattell, R. B.(1966).The scree test for the number of factors.Multivariate Behavioral Research,1(2),245276.CrossRefGoogle ScholarPubMed
Ceulemans, E., &Kiers, H. A.(2009).Discriminating between strong and weak structures in three-mode principal component analysis.British Journal of Mathematical and Statistical Psychology,62(3),601620.CrossRefGoogle ScholarPubMed
Ceulemans, E., &Kiers, H. A. L.(2006).Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method.British Journal of Mathematical and Statistical Psychology,59(1),133150.CrossRefGoogle ScholarPubMed
Ceulemans, E.,Timmerman, M. E., &Kiers, H. A.(2011).The CHull procedure for selecting among multilevel component solutions.Chemometrics and Intelligent Laboratory Systems,106(1),1220.CrossRefGoogle Scholar
Ceulemans, E., &Van Mechelen, I.(2005).Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection.Psychometrika,70(3),461480.CrossRefGoogle Scholar
Ceulemans, E.,Wilderjans, T. F.,Kiers, H. A. L., &Timmerman, M. E.(2016).MultiLevel simultaneous component analysis: A computational shortcut and software package.Behavior Research Methods,48,10081020.CrossRefGoogle ScholarPubMed
Clark, T. S., &Linzer, D. A.(2015).Should I use fixed or random effects.Political Science Research and Methods,3(2),399408.CrossRefGoogle Scholar
Cohen, J.,Cohen, P.,West, S. G., &Aiken, L. S.(2013).Applied multiple regression/correlation analysis for the behavioral sciences.Milton Park:Routledge.CrossRefGoogle Scholar
Crawford, A. V.,Green, S. B.,Levy, R.,Lo, W. J.,Scott, L.,Svetina, D., &Thompson, M. S.(2010).Evaluation of parallel analysis methods for determining the number of factors.Educational and Psychological Measurement,70(6),885901.CrossRefGoogle Scholar
Eisele, G., Lafit, G., Vachon, H., Kuppens, P., Houben, M., Myin-Germeys, I., & Viechtbauer, W. (2020). Affective structure, measurement invariance, and reliability across different experience sampling protocols.CrossRefGoogle Scholar
Ernst, A. F., Timmerman, M. E., Jeronimus, B. F., & Albers, C. J. (2019). Insight into individual differences in emotion dynamics with clustering. Assessment, first online.Google Scholar
Friedman, J.,Hastie, T., &Tibshirani, R.(2001).The elements of statistical learning.New York:Springer.Google Scholar
Friedman, J. H.(1997).On bias, variance, 0/1-loss, and the curse-of-dimensionality.Data Mining and Knowledge Discovery,1(1),5577.CrossRefGoogle Scholar
Gates, K. M., &Molenaar, P. C.(2012).Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples.NeuroImage,63(1),310319.CrossRefGoogle ScholarPubMed
Gelman, A.(2005).Analysis of variance-why it is more important than ever.Annals of Statistics,33(1),153.CrossRefGoogle Scholar
Goldstein, H.(2011).Multilevel statistical models,Hoboken:Wiley.Google Scholar
Hamaker, E.,Ceulemans, E.,Grasman, R., &Tuerlinckx, F.(2015).Modeling affect dynamics: State of the art and future challenges.Emotion Review,7(4),316322.CrossRefGoogle Scholar
Hamilton, J.(1994).Time series analysis,Princeton:Princeton University Press.CrossRefGoogle Scholar
Horn, J. L.(1965).A rationale and test for the number of factors in factor analysis.Psychometrika,30(2),179185.CrossRefGoogle ScholarPubMed
Hox, J. J.(2010).Multilevel analysis: Techniques and applications,New York, NY:Routledge.CrossRefGoogle Scholar
Jongerling, J.,Laurenceau, J. P., &Hamaker, E. L.(2015).A multilevel AR (1) model: Allowing for inter-individual differences in trait-scores, inertia, and innovation variance.Multivariate Behavioral Research,50(3),334349.CrossRefGoogle ScholarPubMed
Kiers, H. A., &Smilde, A. K.(2007).A comparison of various methods for multivariate regression with highly collinear variables.Statistical Methods and Applications,16(2),193228.CrossRefGoogle Scholar
Kiers, H. A. L. ten Berge, J. M. F.(1994).Hierarchical relations between methods for simultaneous component analysis and a technique for rotation to a simple simultaneous structure.British Journal of Mathematical and Statistical Psychology,47,109126.CrossRefGoogle Scholar
Kiers, H. A. L., &ten Berge, J. M. F.(1994).The Harris-Kaiser independent cluster rotation as a method for rotation to simple component weights.Psychometrika,59,8190.CrossRefGoogle Scholar
Krone, T.,Albers, C. J.,Kuppens, P., &Timmerman, M. E.(2018).A multivariate statistical model for emotion dynamics.Emotion,18(5),739754.CrossRefGoogle ScholarPubMed
Krone, T.,Albers, C. J., &Timmerman, M. E.(2016).Comparison of estimation procedures for multilevel AR (1) models.Frontiers in Psychology,7,486CrossRefGoogle ScholarPubMed
Krone, T.,Albers, C. J., &Timmerman, M. E.(2017).A comparative simulation study of AR(1) estimators in short time series.Quality & Quantity,51(1),121.CrossRefGoogle ScholarPubMed
Kuppens, P.,Allen, N. B., &Sheeber, L. B.(2010).Emotional inertia and psychological maladjustment.Psychological Science,21(7),984991.CrossRefGoogle ScholarPubMed
Kuppens, P.,Champagne, D., &Tuerlinckx, F.(2012).The dynamic interplay between appraisal and core affect in daily life.Frontiers in Psychology,3,380.CrossRefGoogle ScholarPubMed
Lafit, G., Adolf, J., Dejonckheere, E., Myin-Germeys, I., Viechtbauer, W., & Ceulemans, E. (2021). Selection of the number of participants in intensive longitudinal studies: A user-friendly shiny app and tutorial for performing power analysis in multilevel regression models that account for temporal dependencies. In Advances in methods and practices in psychological science.CrossRefGoogle Scholar
Larson, R., &Csikszentmihalyi, M.(1983).The experience sampling method.Reis, H. T. New directions for methodology of social and behavioral science,San Francisco:Jossey-Bass.4156.Google Scholar
Liu, S.(2017).Person-specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels.British Journal of Mathematical and Statistical Psychology,70(3),480498.CrossRefGoogle ScholarPubMed
Lorenzo-Seva, U.,Timmerman, M. E., &Kiers, H. A.(2011).The Hull method for selecting the number of common factors.Multivariate Behavioral Research,46(2),340364.CrossRefGoogle ScholarPubMed
Lütkepohl, H.(2005).New introduction to multiple time series analysis.Berlin:Springer.CrossRefGoogle Scholar
Mansueto, A. C., Wiers, R., van Weert, J. C.,Schouten, B. C., & Epskamp, S. (2020). Investigating the feasibility of idiographic network models.CrossRefGoogle Scholar
McNeish, D., &Hamaker, E. L.(2020).A primer on two-level dynamic structural equation models for intensive longitudinal data in Mplus.Psychological Methods,25(5),610CrossRefGoogle ScholarPubMed
Merz, E. L., &Roesch, S. C.(2011).Modeling trait and state variation using multilevel factor analysis with PANAS daily diary data.Journal of Research in Personality,45(1),29 CrossRefGoogle ScholarPubMed
Molenaar, P.(2004).A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever.Measurement,2(4),201218.Google Scholar
Morren, M.,Van Dulmen, S.,Ouwerkerk, J., &Bensing, J.(2009).Compliance with momentary pain measurement using electronic diaries: a systematic review.European Journal of Pain,13(4),354365.CrossRefGoogle ScholarPubMed
Müller, S.,Scealy, J. L., &Welsh, A. H.(2013).Model selection in linear mixed models.Statistical Science,28(2),135167.CrossRefGoogle Scholar
Muthén, B., &Muthén, B. O.(2009).Statistical analysis with latent variables.New York, NY:Wiley.Google Scholar
Myin-Germeys, I.,Kasanova, Z.,Vaessen, T.,Vachon, H.,Kirtley, O.,Viechtbauer, W., &Reininghaus, U.(2018).Experience sampling methodology in mental health research: New insights and technical developments.World Psychiatry,17(2),123132 CrossRefGoogle ScholarPubMed
Ono, M.,Schneider, S.,Junghaenel, D. U., &Stone, A. A.(2019).What affects the completion of ecological momentary assessments in chronic pain research? An individual patient data meta-analysis.Journal of Medical Internet Research,21(2),e11398.CrossRefGoogle ScholarPubMed
Pe, M. L.,Kircanski, K.,Thompson, R. J.,Bringmann, L. F.,Tuerlinckx, F.,Mestdagh, M., &Kuppens, P.(2015).Emotion-network density in major depressive disorder.Clinical Psychological Science,3(2),292300.CrossRefGoogle Scholar
R Core Team(2020).R: A language and environment for statistical computing.Vienna:R Foundation for Statistical Computing.Google Scholar
Raudenbush, S. W., &Bryk, A. S.(2002 Hierarchical linear models: Applications and data analysis methods.2 Thousand Oaks, CA:Sage.Google Scholar
Schepers, J., Ceulemans, E., & Van Mechelen, I. (2008). Selecting among multi-mode partitioning models of different complexities: A comparison of four model selection criteria. Journal of Classification, 25(1), 67.CrossRefGoogle Scholar
Schultzberg, M., &Muthén, B.(2018).Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling.Structural Equation Modeling: A Multidisciplinary Journal,25(4),495515.CrossRefGoogle Scholar
Schuurman, N. K., &Hamaker, E. L.(2019).Measurement error and person-specific reliability in multilevel autoregressive modeling.Psychological Methods,24(1),70.CrossRefGoogle ScholarPubMed
Sels, L.,Ceulemans, E.,Bulteel, K., &Kuppens, P.(2016).Emotional interdependence and well-being in close relationships.Frontiers in Psychology,7,283.CrossRefGoogle ScholarPubMed
Song, H., &Zhang, Z.(2014).Analyzing multiple multivariate time series data using multilevel dynamic factor models.Multivariate Behavioral Research,49(1),6777.CrossRefGoogle ScholarPubMed
Timmerman, M. E., &Kiers, H. A. L.(2003).Four simultaneous component models of multivariate time series for more than one subject to model intraindividual and interindividual differences.Psychometrika,86,105122.CrossRefGoogle Scholar
Trull, T. J., &Ebner-Priemer, U.(2013).Ambulatory assessment.Annual Review of Clinical Psychology,9,151176.CrossRefGoogle ScholarPubMed
Vachon, H.,Viechtbauer, W.,Rintala, A., &Myin-Germeys, I.(2019).Compliance and retention with the experience sampling method over the continuum of severe mental disorders: Meta-analysis and recommendations.Journal of Medical Internet Research,21(12),e14475.CrossRefGoogle ScholarPubMed
Wainer, H.(1976).Estimating coefficients in linear models: It dont make no nevermind.Psychological Bulletin,83(2),213.CrossRefGoogle Scholar
Watson, D.,Clark, L. A., &Tellegen, A.(1988).Development and validation of brief measures of positive and negative affect: The PANAS scales.Journal of Personality and Social Psychology,54(6),1063.CrossRefGoogle ScholarPubMed
Wichers, M.(2014).The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges.Psychological Medicine,44(7),13491360.CrossRefGoogle ScholarPubMed
Wigman, J. T. W.,Van Os, J.,Borsboom, D.,Wardenaar, K. J.,Epskamp, S.,Klippel, A., &Wichers, M.(2015).Exploring the underlying structure of mental disorders: Cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach.Psychological Medicine,45(11),23752387.CrossRefGoogle ScholarPubMed
Wilderjans, T. F.,Ceulemans, E., &Meers, K.(2013).CHull: A generic convex hull based model selection method.Behavior Research Methods,45(1),115.CrossRefGoogle ScholarPubMed
Yarkoni, T., &Westfall, J.(2017).Choosing prediction over explanation in psychology: Lessons from machine learning.Perspectives on Psychological Science,12(6),11001122 CrossRefGoogle ScholarPubMed
Zautra, A. J.,Affleck, G. G.,Tennen, H.,Reich, J. W., &Davis, M. C.(2005).Dynamic approaches to emotions and stress in everyday life: Bolger and Zuckerman reloaded with positive as well as negative affects.Journal of Personality,73(6),15111538 CrossRefGoogle ScholarPubMed