Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T20:34:00.675Z Has data issue: false hasContentIssue false

Structural Modeling of Measurement Error in Generalized Linear Models with Rasch Measures as Covariates

Published online by Cambridge University Press:  01 January 2025

Michela Battauz*
Affiliation:
Department of Statistics, University of Udine
Ruggero Bellio
Affiliation:
Department of Statistics, University of Udine
*
Requests for reprints should be sent to Michela Battauz, Department of Statistics, University of Udine, Via Treppo 18, 33100 Udine, Italy. E-mail: battauz@dss.uniud.it

Abstract

This paper proposes a structural analysis for generalized linear models when some explanatory variables are measured with error and the measurement error variance is a function of the true variables. The focus is on latent variables investigated on the basis of questionnaires and estimated using item response theory models. Latent variable estimates are then treated as observed measures of the true variables. This leads to a two-stage estimation procedure which constitutes an alternative to a joint model for the outcome variable and the responses given to the questionnaire. Simulation studies explore the effect of ignoring the true error structure and the performance of the proposed method. Two illustrative examples concern achievement data of university students. Particular attention is given to the Rasch model.

Type
Original Paper
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, E.B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society, Series B, 32, 283301.CrossRefGoogle Scholar
Andrich, D. (1988). Rasch models for measurement, Newbury Park: Sage Publications.CrossRefGoogle Scholar
Bartholomew, D.J., Knott, M. (1999). Latent variable models and factor analysis, London: Arnold Publishers.Google Scholar
Battauz, M., Bellio, R., Gori, E. (2008). Reducing measurement error in student achievement estimation. Psychometrika, 73, 289302.CrossRefGoogle Scholar
Bock, R.D., Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an application of an EM-algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Carroll, R.J., Wang, Y. (2008). Nonparametric variance estimation in the analysis of microarray data: A measurement error approach. Biometrika, 95, 437449.CrossRefGoogle Scholar
Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M. (2006). Measurement error in nonlinear models: a modern perspective, (2nd ed.). London: Chapman and Hall.CrossRefGoogle Scholar
Casella, G., Berger, R.L. (2002). Statistical inference, (2nd ed.). North Scituate: Duxbury Press.Google Scholar
Cheng, C.L., Van Ness, J. (1999). Statistical regression with measurement error, London: Arnold Publishers.Google Scholar
Christensen, K.B. (2007). Latent covariates in generalized linear models: a Rasch model approach. In Auget, J.-L., Balakrishnan, N., Mesbah, M., Molenberghs, G. (Eds.), Advances in statistical methods for the health sciences (pp. 95108). Boston: Birkhäuser.CrossRefGoogle Scholar
Davison, A.C. (2003). Statistical models, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 138.CrossRefGoogle Scholar
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 2738.CrossRefGoogle Scholar
Fox, J.P., Glas, A.W. (2003). Bayesian modeling of measurement error in predictor variables using item response theory. Psychometrika, 68, 169191.CrossRefGoogle Scholar
Higdon, R., Schafer, D.W. (2001). Maximum likelihood computations for regression with measurement error. Computational Statistics & Data Analysis, 35, 283299.CrossRefGoogle Scholar
Hoijtink, H., Boomsma, A. (1995). On person parameter estimation in the dichotomous Rasch model. In Fischer, G.H., Molenaar, I.W. (Eds.), Rasch models: foundations, recent developments, and applications (pp. 5368). New York: Springer.CrossRefGoogle Scholar
Kosmidis, I., Firth, D. (2009). Bias reduction in exponential family nonlinear models. Biometrika, 96, 793804.CrossRefGoogle Scholar
McCullagh, P., Nelder, J.A. (1989). Generalized linear models, (2nd ed.). London: Chapman and Hall.CrossRefGoogle Scholar
Mislevy, R.T. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80, 993997.CrossRefGoogle Scholar
Monahan, J.F. (2001). Numerical methods of statistics, Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69, 167190.CrossRefGoogle Scholar
R Development Core Team (2010). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Danish Institute for Educational Research: Copenhagen.Google Scholar
Schafer, D.W. (1987). Covariate measurement error in generalized linear models. Biometrika, 74, 385391.CrossRefGoogle Scholar
Schafer, D.W., Purdy, K.G. (1996). Likelihood analysis for errors-in-variables regression with replicate measurements. Biometrika, 83, 813824.CrossRefGoogle Scholar
van der Linden, W.J., Hambleton, R.K. (1997). Handbook of modern item response theory, New York: Springer.CrossRefGoogle Scholar
Wang, Y., Ma, Y., Carroll, R.J. (2009). Variance estimation in the analysis of microarray data. Journal of the Royal Statistical Society, Series B, 71, 425445.CrossRefGoogle ScholarPubMed
Warm, T.A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427450.CrossRefGoogle Scholar