Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T02:17:49.354Z Has data issue: false hasContentIssue false

State-Space Analysis of Working Memory in Schizophrenia: An FBIRN Study

Published online by Cambridge University Press:  01 January 2025

Firdaus Janoos*
Affiliation:
Brigham and Women’s Hospital Harvard Medical School
Gregory Brown
Affiliation:
University of California, San Diego
Istvan Á. Mórocz
Affiliation:
Brigham and Women’s Hospital
William M. Wells III
Affiliation:
Brigham and Women’s Hospital Harvard Medical School
*
Requests for reprints should be sent to Firdaus Janoos, Brigham and Women’s Hospital, Boston, MA, USA. E-mail: fjanoos@bwh.harvard.edu

Abstract

The neural correlates of working memory (WM) in schizophrenia (SZ) have been extensively studied using the multisite fMRI data acquired by the Functional Biomedical Informatics Research Network (fBIRN) consortium. Although univariate and multivariate analysis methods have been variously employed to localize brain responses under differing task conditions, important hypotheses regarding the representation of mental processes in the spatio-temporal patterns of neural recruitment and the differential organization of these mental processes in patients versus controls have not been addressed in this context. This paper uses a multivariate state-space model (SSM) to analyze the differential representation and organization of mental processes of controls and patients performing the Sternberg Item Recognition Paradigm (SIRP) WM task. The SSM is able to not only predict the mental state of the subject from the data, but also yield estimates of the spatial distribution and temporal ordering of neural activity, along with estimates of the hemodynamic response. The dynamical Bayesian modeling approach used in this study was able to find significant differences between the predictability and organization of the working memory processes of SZ patients versus healthy subjects. Prediction of some stimulus types from imaging data in the SZ group was significantly lower than controls, reflecting a greater level of disorganization/heterogeneity of their mental processes. Moreover, the changes in accuracy of predicting the mental state of the subject with respect to parametric modulations, such as memory load and task duration, may have important implications on the neurocognitive models for WM processes in both SZ and healthy adults. Additionally, the SSM was used to compare the spatio-temporal patterns of mental activity across subjects, in a holistic fashion and to derive a low-dimensional representation space for the SIRP task, in which subjects were found to cluster according to their diagnosis.

Type
Original Paper
Copyright
Copyright © 2012 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, R., Juola, J. (1974). Search and decision processes in recognition memory. In Krantz, D.H., Atkinson, R.C., Luce, R.D., Suppes, P. (Eds.), Contemporary developments in mathematical psychology: Vol. I. Learning, memory, and thinking, San Francisco: Freeman 243293Google Scholar
Baringhaus, L., Franz, C. (2004). On a new multivariate two-sample test. Journal of Multivariate Analysis, 88, 190206CrossRefGoogle Scholar
Belkin, M., Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 13731396CrossRefGoogle Scholar
Bellec, P., Rosa-Neto, P., Lyttelton, O.C., Benali, H., Evans, A.C. (2010). Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage, 51(3), 11261139CrossRefGoogle ScholarPubMed
Bilder, R.M. (2009). The neuropsychology of schizophrenia circa 2009. Neuropsychology Review, 19(3), 277279CrossRefGoogle ScholarPubMed
Bishop, C.M. (2007). Pattern Recognition and Machine Learning, (2nd ed.). Berlin: Springer 1st ed. 2006Google Scholar
Boynton, G.M., Engel, S.A., Glover, G.H., Heeger, D.J. (1996). Linear systems analysis of functional magnetic resonance imaging in human v1. Neuroscience, 16(13), 42074221CrossRefGoogle ScholarPubMed
Brown, G.G., McCarthy, G., Bischoff-Grethe, A., Ozyurt, B., Greve, D., Potkin, S.G., Turner, J.A., Notestine, R., Calhoun, V.D., Ford, J.M., Mathalon, D., Manoach, D.S., Gadde, S., Glover, G.H., Wible, C.G., Belger, A., Gollub, R.L., Lauriello, J., O’Leary, D., Lim, K.O. (2009). Brain-performance correlates of working memory retrieval in schizophrenia: a cognitive modeling approach. Schizophrenia Bulletin, 35(1), 3246CrossRefGoogle ScholarPubMed
Brown, G.G., Thompson, W.K. (2010). Functional brain imaging in schizophrenia: selected results and methods. Current Topics in Behavioral Neurosciences, 4, 181214CrossRefGoogle ScholarPubMed
Calhoun, V.D., Adali, T. (2006). Unmixing fMRI with independent component analysis. IEEE Engineering in Medicine and Biology Magazine, 25(2), 7990CrossRefGoogle ScholarPubMed
Chung, F. (1997). Lectures on Spectral Graph Theory, Providence: Am. Math. Soc.Google Scholar
Cohen, E.R., Rostrup, E., Sidaros, K., Lund, T.E., Paulson, O.B., Ugurbil, K., Kim, S.-G. (2004). Hypercapnic normalization of bold fMRI: comparison across field strengths and pulse sequences. NeuroImage, 23(2), 613624CrossRefGoogle ScholarPubMed
DSM (2000). Diagnostic and statistical manual of mental disorders DSM-IV-TR Fourth edition (text revision). (4th ed.). Google Scholar
Egan, M.F., Weinberger, D.R. (1997). Neurobiology of schizophrenia. Current Opinion in Neurobiology, 7(5), 701707CrossRefGoogle ScholarPubMed
Eyler, L.T., Olsen, R.K., Jeste, D.V., Brown, G.G. (2004). Abnormal brain response of chronic schizophrenia patients despite normal performance during a visual vigilance task. Psychiatry Research, 130(3), 245257CrossRefGoogle ScholarPubMed
Faisan, S., Thoraval, L., Armspach, J.-P., Heitz, F. (2007). Hidden Markov multiple event sequence models: a paradigm for the spatio-temporal analysis of fMRI data. Medical Image Analysis, 11(1), 120CrossRefGoogle ScholarPubMed
Friedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L., Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B., Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M., Potkin, S.G. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping, 29(8), 958972CrossRefGoogle Scholar
Friston, K., Chu, C., Mouräo-Miranda, J., Hulme, O., Rees, G., Penny, W., Ashburner, J. (2008). Bayesian decoding of brain images. NeuroImage, 39(1), 181205CrossRefGoogle ScholarPubMed
Friston, K.J. (2009). Modalities, modes, and models in functional neuroimaging. Science, 326(5951), 399403CrossRefGoogle ScholarPubMed
Friston, K.J., Mechelli, A., Turner, R., Price, C.J. (2000). Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage, 12(4), 466477CrossRefGoogle ScholarPubMed
Hastie, T., Tibshirani, R., Friedman, J.H. (2003). The Elements of Statistical Learning, corrected ed.Berlin: SpringerGoogle Scholar
Haxby, J.V., Gobbini, M.I., Furey, M.L., Ishai, A., Schouten, J.L., Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293(5539), 24252430CrossRefGoogle ScholarPubMed
Haynes, J.-D., Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews. Neuroscience, 7(7), 523534CrossRefGoogle ScholarPubMed
Højen-Sørensen, P., Hansen, L.K., Rasmussen, C.E. et al (2000). Bayesian modelling of fMRI time series. In Solla, S.S. et al (Eds.), Adv. Neural. Info Proc. Sys. (NIPS), 754760Google Scholar
Hutchinson, R.A., Niculescu, R.S., Keller, T.A., Rustandi, I., Mitchell, T.M. (2009). Modeling fMRI data generated by overlapping cognitive processes with unknown onsets using hidden process models. NeuroImage, 46(1), 87104CrossRefGoogle ScholarPubMed
Jain, A.K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651666 Award winning papers from the 19th international conference on pattern recognition (ICPR), 19th international conference in pattern recognition (ICPR)CrossRefGoogle Scholar
Janoos, F., Machiraju, R., Singh, S., Äkos Morocz, I. (2011). Spatio-temporal models of mental processes from fMRI. NeuroImage, 57(2), 362377CrossRefGoogle ScholarPubMed
Jansma, J.M., Ramsey, N.F., van der Wee, N.J.A., Kahn, R.S. (2004). Working memory capacity in schizophrenia: a parametric fMRI study. Schizophrenia Research, 68(2–3), 159171CrossRefGoogle ScholarPubMed
Joyce, E.M., Roiser, J.P. (2007). Cognitive heterogeneity in schizophrenia. Current Opinion in Psychiatry, 20(3), 268272CrossRefGoogle ScholarPubMed
Kim, D.I., Manoach, D.S., Mathalon, D.H., Turner, J.A., Mannell, M., Brown, G.G., Ford, J.M., Gollub, R.L., White, T., Wible, C., Belger, A., Bockholt, H.J., Clark, V.P., Lauriello, J., O’Leary, D., Mueller, B.A., Lim, K.O., Andreasen, N., Potkin, S.G., Calhoun, V.D. (2009). Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Human Brain Mapping, 30(11), 37953811CrossRefGoogle ScholarPubMed
Kim, M.A., Tura, E., Potkin, S.G., Fallon, J.H., Manoach, D.S., Calhoun, V.D., Turner, J.A.FBIRN. (2010). Working memory circuitry in schizophrenia shows widespread cortical inefficiency and compensation. Schizophrenia Research, 117(1), 4251CrossRefGoogle ScholarPubMed
Kindermann, S.S., Brown, G.G., Zorrilla, L.E., Olsen, R.K., Jeste, D.V. (2004). Spatial working memory among middle-aged and older patients with schizophrenia and volunteers using fMRI. Schizophrenia Research, 68(2–3), 203216CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Bandettini, P. (2007). Analyzing for information, not activation, to exploit high-resolution fMRI. NeuroImage, 38(4), 649662CrossRefGoogle Scholar
Kriegeskorte, N., Mur, M., Bandettini, P. (2008). Representational similarity analysis—connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2Google ScholarPubMed
Kruggel, F., Zysset, S., von Cramon, D.Y. (2000). Nonlinear regression of functional MRI data: an item recognition task study. NeuroImage, 12(2), 173183CrossRefGoogle ScholarPubMed
Lanterman, A.D. (2001). Schwarz, Wallace, and Rissanen: Intertwining themes in theories of model selection. International Statistical Review, 69(2), 185212CrossRefGoogle Scholar
Li, K., Guo, L., Nie, J., Li, G., Liu, T. (2009). Review of methods for functional brain connectivity detection using fMRI. Computerized Medical Imaging and Graphics, 33(2), 131139CrossRefGoogle ScholarPubMed
Makni, S., Beckmann, C., Smith, S., Woolrich, M. (2008). Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems. NeuroImage, 42(4), 13811396CrossRefGoogle ScholarPubMed
Manoach, D.S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research, 60(2–3), 285298CrossRefGoogle ScholarPubMed
Manoach, D.S., Schlaug, G., Siewert, B., Darby, D.G., Bly, B.M., Benfield, A., Edelman, R.R., Warach, S. (1997). Prefrontal cortex fMRI signal changes are correlated with working memory load. NeuroReport, 8(2), 545549CrossRefGoogle ScholarPubMed
McIntosh, A.R., Lobaugh, N.J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23(Suppl 1), S250S263CrossRefGoogle ScholarPubMed
Mendrek, A., Kiehl, K.A., Smith, A.M., Irwin, D., Forster, B.B., Liddle, P.F. (2005). Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychologie und Medizin, 35(2), 187196CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Poline, J.B., Kohn, P.D., Holt, J.L., Egan, M.F., Weinberger, D.R., Berman, K.F. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. The American Journal of Psychiatry, 158(11), 18091817CrossRefGoogle ScholarPubMed
Mitchell, T.M., Shinkareva, S.V., Carlson, A., Chang, K.-M., Malave, V.L., Mason, R.A., Just, M.A. (2008). Predicting human brain activity associated with the meanings of nouns. Science, 320(5880), 11911195CrossRefGoogle ScholarPubMed
Mórocz, I.A., Janoos, F., van Gelderen, P., Manor, D., Karni, A., Breznitz, Z., von Aster, M., Kushnir, T., Shalev, R. (2012). Time-resolved and spatio-temporal analysis of complex cognitive processes and their role in disorders like developmental dyscalculia. International Journal of Imaging Systems and Technology, 22(1), 8196CrossRefGoogle ScholarPubMed
Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V. (2006). Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences, 10(9), 424430CrossRefGoogle ScholarPubMed
Nosofsky, R.M., Little, D.R., Donkin, C., Fific, M. (2011). Short-term memory scanning viewed as exemplar-based categorization. Psychological Review, 118(2), 280315CrossRefGoogle ScholarPubMed
O’Toole, A.J., Jiang, F., Abdi, H., Pänard, N., Dunlop, J.P., Parent, M.A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 17351752CrossRefGoogle Scholar
Ou, W., Wells, W.M., Golland, P. (2010). Combining spatial priors and anatomical information for fMRI detection. Medical Image Analysis, 14(3), 318331CrossRefGoogle ScholarPubMed
Palmer, B.W., Dawes, S.E., Heaton, R.K. (2009). What do we know about neuropsychological aspects of schizophrenia?. Neuropsychology Review, 19(3), 365384CrossRefGoogle ScholarPubMed
Paskavitz, J.F., Sweet, L.H., Wellen, J., Helmer, K.G., Rao, S.M., Cohen, R.A. (2010). Recruitment and stabilization of brain activation within a working memory task; an fMRI study. Brain Imaging and Behavior, 4(1), 521CrossRefGoogle ScholarPubMed
Penny, W., Ghahramani, Z., Friston, K. (2005). Bilinear dynamical systems. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 983993CrossRefGoogle ScholarPubMed
Pereira, F., Mitchell, T., Botvinick, M. (2009). Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45(1, Suppl. 1), S199S209 Mathematics in Brain ImagingCrossRefGoogle ScholarPubMed
Perlstein, W.M., Carter, C.S., Noll, D.C., Cohen, J.D. (2001). Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia. The American Journal of Psychiatry, 158(7), 11051113CrossRefGoogle ScholarPubMed
Potkin, S.G., Ford, J.M. (2009). Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium. Schizophrenia Bulletin, 35(1), 1518CrossRefGoogle ScholarPubMed
Potkin, S.G., Turner, J.A., Brown, G.G., McCarthy, G., Greve, D.N., Glover, G.H., Manoach, D.S., Belger, A., Diaz, M., Wible, C.G., Ford, J.M., Mathalon, D.H., Gollub, R., Lauriello, J., O’Leary, D., van Erp, T.G.M., Toga, A.W., Preda, A., Lim, K.O.FBIRN. (2009). Working memory and DLFPC inefficiency in schizophrenia: the FBIRN study. Schizophrenia Bulletin, 35(1), 1931CrossRefGoogle Scholar
Quirós, A., Diez, R.M., Wilson, S.P. (2010). Bayesian spatiotemporal model of fMRI data using transfer functions. NeuroImage, 52(3), 9951004CrossRefGoogle ScholarPubMed
Rojas, D.C., Teale, P.D., Sheeder, J.L., Reite, M.L. (2000). Neuromagnetic alpha suppression during an auditory Sternberg task. Evidence for a serial, self-terminating search of short-term memory. Brain Research. Cognitive Brain Research, 10(1–2), 8589CrossRefGoogle ScholarPubMed
Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., Bannister, P., Luca, M.D., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., Stefano, N.D., Brady, J., Matthews, P. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1), 208219CrossRefGoogle ScholarPubMed
Wolf, D.H., Gur, R.C., Valdez, J.N., Loughead, J., Elliott, M.A., Gur, R.E., Ragland, J.D. (2007). Alterations of fronto-temporal connectivity during word encoding in schizophrenia. Psychiatry Research. Neuroimaging, 154(3), 221232CrossRefGoogle ScholarPubMed
Worsley, K.J., Liao, C.H., Aston, J., Petre, V., Duncan, G.H., Morales, F., Evans, A.C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15(1), 115CrossRefGoogle Scholar
Zaromb, F.M., Roediger, H.L. (2010). The testing effect in free recall is associated with enhanced organizational processes. Memory & Cognition, 38(8), 9951008CrossRefGoogle ScholarPubMed