Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T10:17:49.520Z Has data issue: false hasContentIssue false

Some New Results on Factor Indeterminacy

Published online by Cambridge University Press:  01 January 2025

Peter H. Schönemann
Affiliation:
Purdue University
Ming-Mei Wang
Affiliation:
Purdue University

Abstract

Some relations between maximum likelihood factor analysis and factor indeterminacy are discussed. Bounds are derived for the minimum average correlation between equivalent sets of correlated factors which depend on the latent roots of the factor intercorrelation matrix Ψ. Empirical examples are presented to illustrate some of the theory and indicate the extent to which it can be expected to be relevant in practice.

Type
Original Paper
Copyright
Copyright © 1972 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. W. An introduction to multivariate statistical analysis, 1958, New York: WileyGoogle Scholar
Anderson, T. W., Rubin, H. Statistical inference in factor analysis. In Neyman, J. (Eds.), Proceedings of third Berkeley symposium on mathematical statistics and probability. Berkeley: Univer. California Press. 1956, 111150Google Scholar
Bargmann, R. A study of independence and dependence in multivariate normal analysis. University of North Carolina, Institute of Statistics Mimeo Series No. 186, 1957.Google Scholar
Bechtoldt, H. P. An empirical study of the factor analysis stability hypothesis. Psychometrika, 1961, 26, 405432CrossRefGoogle Scholar
Bellman, R. Introduction to matrix analysis, 1960, New York: McGraw-HillGoogle Scholar
Browne, Michael, W. A comparison of factor analytic techniques. Psychometrika, 1968, 33, 267334CrossRefGoogle ScholarPubMed
Browne, Michael W. Fitting the factor analysis model. Psychometrika, 1969, 34, 375394CrossRefGoogle Scholar
Camp, B. H. The converse of Spearman's two-factor theorem. Biometrika, 1932, 24, 418427CrossRefGoogle Scholar
Davis, F. B. Fundamental factors of comprehension in reading. Psychometrika, 1944, 9, 185197CrossRefGoogle Scholar
Emmett, W. G. Factor analysis by Lawley's method of maximum likelihood. British Journal of Psychology, Statistical Section, 1949, 2, 9097CrossRefGoogle Scholar
Guttman, L. The determinacy of factor score matrices with implications for five other basic problems of common-factor theory. British Journal of Statistical Psychology, 1955, 8, 6581CrossRefGoogle Scholar
Guttman, L. Image theory for the structure of quantitative variates. Psychometrika, 1953, 18, 277296CrossRefGoogle Scholar
Harman, H. H. Modern factor analysis, 1960, Chicago: University of Chicago PressGoogle Scholar
Harman, H. H. Modern factor analysis, Second Edition (Revised), Chicago: University of Chicago Press, 1967Google Scholar
Harris, C. W. On factors and factor scores. Psychometrika, 1967, 32, 363379CrossRefGoogle Scholar
Harris, C. W. Some Rao-Guttman relationships. Psychometrika, 1962, 27, 247263CrossRefGoogle Scholar
Heermann, E. F. The geometry of factorial indeterminacy. Psychometrika, 1964, 29, 371381CrossRefGoogle Scholar
Heermann, E. F. The algebra of factorial indeterminacy. Psychometrika, 1966, 31, 539543CrossRefGoogle Scholar
Hendrickson, A. E., and White, P. O. PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 1964, 17, 6570CrossRefGoogle Scholar
Horst, Paul Generalized Factor Analysis. Part I. Technical Report. Seattle, Washington, 1969.Google Scholar
Householder, A. S. Theory of matrices in numerical analysis, 1963, New York: GinnGoogle Scholar
Howe, W. G. Some contributions to factor analysis. Report No. ORNL-1919, 1955, Oak Ridge, Tennessee: Oak Ridge National LaboratoryGoogle Scholar
Jöreskog, K. G. Some contributions to maximum likelihood factor analysis. Psychometrika, 1967, 32, 443482CrossRefGoogle Scholar
Jöreskog, K. G. Statistical estimation in factor analysis, 1963, Stockholm: Almqvist & WiksellGoogle Scholar
Kaiser, H. F. Image analysis. In: Harris, C. W. (Ed.), Problems in measuring change. University of Wisconsin Press, 1963.Google Scholar
Kestelman, H. The fundamental equation of factor analysis. British Journal of Psychology, Statistical Section, 1952, 5, 16CrossRefGoogle Scholar
Lawley, D. N. The estimation of factor loadings by the method of maximum likelihood. Proceedings of the Royal Society of Edinburgh, 1940, 60, 6482CrossRefGoogle Scholar
Lawley, D. N. Further investigations in factor estimation. Proceedings of the Royal Society of Edinburgh, 1942, 61, 176185Google Scholar
Lawley, D. N. The application of the maximum likelihood method to factor analysis. British Journal of Psychology, 1943, 33, 172175Google Scholar
Lawley, D. N., and Maxwell, A. E. Factor analysis as a statistical method, 1963, London: ButterworthsGoogle Scholar
Ledermann, W. The orthogonal transformation of a factorial matrix into itself. Psychometrika, 1938, 3, 181187CrossRefGoogle Scholar
Lord, F. M. A study of speed factors in tests and academic grades. Psychometrika, 1956, 21, 3150CrossRefGoogle Scholar
Maxwell, E. A. Recent trends in factor analysis. Journal of the Royal Statistical Society, 1961, 124, 4959CrossRefGoogle Scholar
McDonald, R. P., and Burr, E. J. A comparison of four methods of construction factor scores. Psychometrika, 1967, 32, 381401CrossRefGoogle Scholar
Pawlik, K. Dimensionen des verhaltens, 1968, Bern: H. HuberGoogle Scholar
Piaggio, H. T. H. Three sets of conditions necessary for the existence of a g that is real and unique except in sign. British Journal of Psychology, 1933, 24, 88105Google Scholar
Rao, C. R. Estimation and tests of significance in factor analysis. Psychometrika, 1955, 20, 93111CrossRefGoogle Scholar
Schönemann, Peter H. The minimum average correlation between equivalent sets of uncorrelated factors. Psychometrika, 1971, 36, 2130CrossRefGoogle Scholar
Thomson, G. H. The definition and measurement of “g” (general intelligence). Journal of Educational Psychology, 1935, 26, 241262CrossRefGoogle Scholar
Thurstone, L. L. The dimensions of temperament. Psychometrika, 1951, 16, 1120CrossRefGoogle Scholar
Wilson, E. B. On hierarchical correlation systems. Proceedings, National Academy of Science, 1928, 14, 283291CrossRefGoogle ScholarPubMed