Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T12:43:21.279Z Has data issue: false hasContentIssue false

Social Network Mediation Analysis: A Latent Space Approach

Published online by Cambridge University Press:  01 January 2025

Haiyan Liu*
Affiliation:
University of California, Merced
Ick Hoon Jin
Affiliation:
Yonsei University
Zhiyong Zhang
Affiliation:
University of Notre Dame
Ying Yuan
Affiliation:
The University of Texas MD, Anderson Cancer Center
*
Correspondence should be made to Haiyan Liu, Psychological Sciences, University of California, Merced, 5200 N. Lake Road, Merced, CA 95343, USA. Email: hliu62@ucmerced.edu

Abstract

A social network comprises both actors and the social connections among them. Such connections reflect the dependence among social actors, which is essential for individuals’ mental health and social development. In this article, we propose a mediation model with a social network as a mediator to investigate the potential mediation role of a social network. In the model, the dependence among actors is accounted for by a few mutually orthogonal latent dimensions which form a social space. The individuals’ positions in such a latent social space are directly involved in the mediation process between an independent and dependent variable. After showing that all the latent dimensions are equivalent in terms of their relationship to the social network and the meaning of each dimension is arbitrary, we propose to measure the whole mediation effect of a network. Although individuals’ positions in the latent space are not unique, we rigorously articulate that the proposed network mediation effect is still well defined. We use a Bayesian estimation method to estimate the model and evaluate its performance through an extensive simulation study under representative conditions. The usefulness of the network mediation model is demonstrated through an application to a college friendship network.

Type
Theory and Methods (T&M)
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airoldi, E. M.,Blei, D. M.,Fienberg, S. E., &Xing, E. P.(2008).Mixed membership stochastic blockmodels.Journal of Machine Learning Research,9(Sep),19812014.Google ScholarPubMed
Anderson, C. J.,Wasserman, S., &Crouch, B.(1999).A p* primer: Logit models for social networks.Social Networks,21(1),3766.CrossRefGoogle Scholar
Anderson, C. J.,Wasserman, S., &Faust, K.(1992).Building stochastic blockmodels.Social Networks,14(1–2),137161.CrossRefGoogle Scholar
Asendorpf, J. B., &Wilpers, S.(1998).Personality effects on social relationships.Journal of Personality and Social Psychology,74(6),15311544.CrossRefGoogle Scholar
Baron, R. M., &Kenny, D. A.(1986).The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.Journal of Personality and Social Psychology,51(6),11731182.CrossRefGoogle ScholarPubMed
Broman, C. L.(1993).Social relationships and health-related behavior.Journal of Behavioral Medicine,16(4),335350.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., &Cacioppo, S.(2014).Social relationships and health: The toxic effects of perceived social isolation.Social and Personality Psychology Compass,8(2),5872.CrossRefGoogle ScholarPubMed
Carrington, P. J., Scott, J., & Wasserman, S. (2005). Models and methods in social network analysis (28). Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Cattell, R. B.(1952).Factor analysis: An introduction and manual for the psychologist and social scientist,New York:Harper.Google Scholar
Cheng, Y.,Liu, H.(2016).A short note on the maximal point-biserial correlation under non-normality.British Journal of Mathematical and Statistical Psychology,69(3),344351.CrossRefGoogle Scholar
Cheong, J.,MacKinnon, D. P., &Khoo, S. T.(2003).Investigation of mediational processes using parallel process latent growth curve modeling.Structural Equation Modeling,10(2),238262.CrossRefGoogle ScholarPubMed
Choi, D. S.,Wolfe, P. J., &Airoldi, E. M.(2012).Stochastic blockmodels with a growing number of classes.Biometrika,99(2),273284.CrossRefGoogle ScholarPubMed
Clifton, A., &Webster, G. D.(2017).An introduction to social network analysis for personality and social psychologists.Social Psychological and Personality Science,8(4),442453.CrossRefGoogle Scholar
Cole, D. A., &Maxwell, S. E.(2003).Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling.Journal of Abnormal Psychology,112(4),558577.CrossRefGoogle ScholarPubMed
Daniel, R. M.,De Stavola, B. L.,Cousens, S., &Vansteelandt, S.(2015).Causal mediation analysis with multiple mediators.Biometrics,71(1),114.CrossRefGoogle ScholarPubMed
Depaoli, S.,Winter, S. D.,Lai, K., &Guerra-Peña, K.(2019).Implementing continuous non-normal skewed distributions in latent growth mixture modeling: An assessment of specification errors and class enumeration.Multivariate Behavioral Research,54(6),795821.CrossRefGoogle ScholarPubMed
Enders, C. K.,Fairchild, A. J., &MacKinnon, D. P.(2013).A Bayesian approach for estimating mediation effects with missing data.Multivariate Behavioral Research,48(3),340369.3769802CrossRefGoogle ScholarPubMed
Epskamp, S.,Rhemtulla, M., &Borsboom, D.(2017).Generalized network pschometrics: Combining network and latent variable models.Psychometrika,82(4),904927.CrossRefGoogle ScholarPubMed
Flashman, J.(2012).Academic achievement and its impact on friend dynamics.Sociology of Education,85(1),6180.CrossRefGoogle ScholarPubMed
Fritz, M. S., &MacKinnon, D. P.(2007).Required sample size to detect the mediated effect.Psychological Science,18(3),233239.CrossRefGoogle ScholarPubMed
Fuhrer, R., &Stansfeld, S. A.(2002).How gender affects patterns of social relations and their impact on health: A comparison of one or multiple sources of support from “close persons”.Social Science and Medicine,54(5),811825.CrossRefGoogle ScholarPubMed
Gelman, A.,Carlin, J. B.,Stern, H. S.,Dunson, D. B.,Vehtari, A., &Rubin, D. B.(2014).Bayesian data analysis,Boca Raton, FL:CRC Press.Google Scholar
Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. https://doi.org/10.21034/sr.148CrossRefGoogle Scholar
Grunspan, D. Z.,Wiggins, B. L., &Goodreau, S. M.(2014).Understanding classrooms through social network analysis: A primer for social network analysis in education research.CBE-Life Sciences Education,13(2),167178.CrossRefGoogle ScholarPubMed
Gurung, R.,Sarason, B., &Sarason, I.Duck, S. E.,Hay, D. F.,Hobfoll, S. E.,Ickes, W. E., &Montgomery, B. M.(1997).Close personal relationships and health outcomes: A key to the role of social support.Handbook of personal relationships: Theory, research and interventions,Chichester:Wiley.547573.Google Scholar
Handcock, M. S.,Raftery, A. E., &Tantrum, J. M.(2007).Model-based clustering for social networks.Journal of the Royal Statistical Society: Series A (Statistics in Society),170(2),301354.CrossRefGoogle Scholar
Harris, K., &Vazire, S.(2016).On friendship development and the Big Five personality traits.Social and Personality Psychology Compass,10(11),647667.CrossRefGoogle Scholar
Hayes, A. F.(2009).Beyond Baron and Kenny: Statistical mediation analysis in the new millennium.Communication Monographs,76(4),408420.CrossRefGoogle Scholar
Hoff, P. D. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In: Advances in neural information processing systems (pp. 657–664).Google Scholar
Hoff, P. D.,Raftery, A. E., &Handcock, M. S.(2002).Latent space approaches to social network analysis.Journal of the American Statistical Association,97(460),10901098.CrossRefGoogle Scholar
Holland, P. W.,Laskey, K. B., &Leinhardt, S.(1983).Stochastic blockmodels: First steps.Social Networks,5(2),109137.CrossRefGoogle Scholar
House, J. S.,Landis, K. R., &Umberson, D.(1988).Social relationships and health.Science,241(4865),540545.CrossRefGoogle ScholarPubMed
Imai, K.,Keele, L., &Tingley, D.(2010).A general approach to causal mediation analysis.Psychological Methods,15(4),309334.CrossRefGoogle ScholarPubMed
Imai, K., &Yamamoto, T.(2013).Identification and sensitivity analysis for multiple causal mechanisms: Revisiting evidence from framing experiments.Political Analysis,21 141171.CrossRefGoogle Scholar
Jose, P. E.(2016).The merits of using longitudinal mediation.Educational Psychologist,51 331341.CrossRefGoogle Scholar
Kenny, D. A.,Korchmaros, J. D., &Bolger, N.(2003).Lower level mediation in multilevel models.Psychological Methods,8(2),115CrossRefGoogle ScholarPubMed
Krivitsky, P. N., & Handcock, M. S. (2017). latentnet: Latent position and cluster models for statistical networks [Computer software manual]. https://CRAN.R-project.org/package=latentnet.Google Scholar
Krivitsky, P. N.,Handcock, M. S.,Raftery, A. E., &Hoff, P. D.(2009).Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models.Social Networks,31(3),204213.CrossRefGoogle ScholarPubMed
Kruschke, J.(2014).Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan,Cambridge:Academic Press.Google Scholar
Lee, S-Y, &Song, X.-Y.(2012).Basic and advanced Bayesian structural equation modeling: With applications in the medical and behavioral sciences,Hoboken:Wiley.Google Scholar
Liu, H.,Jin, I. H., &Zhang, Z.(2018).Structural equation modeling of social networks: Specification, estimation, and application.Multivariate Behavioral Research,53(5),714730.CrossRefGoogle ScholarPubMed
Lusher, D.,Koskinen, J., &Robins, G.(2013).Exponential random graph models for social networks: Theory, methods, and applications,Cambridge:Cambridge University Press.Google Scholar
MacKinnon, D. P.(2012).Introduction to statistical mediation analysis,Abingdon:Routledge.CrossRefGoogle Scholar
MacKinnon, D. P.,Fairchild, A. J., &Fritz, M. S.(2007).Mediation analysis.Annual Review of Psychology,58 593614.CrossRefGoogle ScholarPubMed
MacKinnon, D. P.,Krull, J. L., &Lockwood, C. M.(2000).Equivalence of the mediation, confounding and suppression effect.Prevention Science,1(4),173181.CrossRefGoogle ScholarPubMed
MacKinnon, D. P.,Lockwood, C. M.,Hoffman, J. M.,West, S. G., &Sheets, V.(2002).A comparison of methods to test mediation and other intervening variable effects.Psychological Methods,7(1),83104.CrossRefGoogle ScholarPubMed
MacKinnon, D. P.,Lockwood, C. M., &Williams, J.(2004).Confidence limits for the indirect effect: Distribution of the product and resampling methods.Multivariate Behavioral Research,39(1),99128.CrossRefGoogle ScholarPubMed
MacKinnon, D. P.,Warsi, G., &Dwyer, J. H.(1995).A simulation study of mediated effect measures.Multivariate Behavioral Research,30(1),4162.CrossRefGoogle ScholarPubMed
McCamish-Svensson, C.,Samuelsson, G.,Hagberg, B.,Svensson, T., &Dehlin, O.(1999).Social relationships and health as predictors of life satisfaction in advanced old age: Results from a Swedish longitudinal study.The International Journal of Aging and Human Development,48(4),301324.CrossRefGoogle ScholarPubMed
McCrae, R. R.,Martin, T. A.,Hrebickova, M.,Urbánek, T.,Boomsma, D. I.,Willemsen, G., &Costa, P. T.(2008).Personality trait similarity between spouses in four cultures.Journal of Personality,76(5),11371164.CrossRefGoogle ScholarPubMed
Miočević, M.,Gonzalez, O.,Valente, M. J., &MacKinnon, D. P.(2018).A tutorial in Bayesian potential outcomes mediation analysis.Structural Equation Modeling: A Multidisciplinary Journal,25(1),121136.CrossRefGoogle ScholarPubMed
Muthén, B., &Asparouhov, T.(2012).Bayesian structural equation modeling: A more flexible representation of substantive theory.Psychological Methods,17(3),313335.CrossRefGoogle ScholarPubMed
Newman, M. E.,Watts, D. J., &Strogatz, S. H.(2002).Random graph models of social networks.Proceedings of the National Academy of Sciences,99(suppl 1),25662572.CrossRefGoogle ScholarPubMed
Nordlund, C.(2019).Direct blockmodeling of valued and binary networks: A dichotomization-free approach.Social Networks,61 128143.CrossRefGoogle Scholar
Paul, S., &Chen, Y.(2016).Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel.Electronic Journal of Statistics,2 38073870.Google Scholar
Pearl, J.(2014).Interpretation and identification of causal mediation.Psychological Methods,19(4),459811.CrossRefGoogle ScholarPubMed
Preacher, K. J., &Hayes, A. F.(2008).Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models.Behavior Research Methods,40(3),879891.CrossRefGoogle ScholarPubMed
Preacher, K. J., &Selig, J. P.(2012).Advantages of Monte Carlo confidence intervals for indirect effects.Communication Methods and Measures,6(2),7798.CrossRefGoogle Scholar
Reitzel, L. R.,Kendzor, D. E.,Castro, Y.,Cao, Y.,Businelle, M. S., &Mazas, C. A.etal(2012).The relation between social cohesion and smoking cessation among black smokers, and the potential role of psychosocial mediators.Annals of Behavioral Medicine,45(2),249257.CrossRefGoogle Scholar
Richiardi, L.,Bellocco, R., &Zugna, D.(2013).Mediation analysis in epidemiology: Methods, interpretation and bias.International Journal of Epidemiology,42(5),15111519.CrossRefGoogle ScholarPubMed
Roth, D. L., &MacKinnon, D. P.Newsom, J. T.,Jones, R. N., &Hofer, S. M.(2012).Mediation analysis with longitudinal data.Longitudinal data analysis: A practical guide for researchers in aging, health, and social sciences,New York:Taylor & Francis Group.181216.Google Scholar
Schaefer, D. R.,Adams, J., &Haas, S. A.(2013).Social networks and smoking: Exploring the effects of peer influence and smoker popularity through simulations.Health Education and Behavior,40(1 suppl),24S32S.CrossRefGoogle ScholarPubMed
Schane, R. E.,Glantz, S. A., &Ling, P. M.(2009).Social smoking: Implications for public health, clinical practice, and intervention research.American Journal of Preventive Medicine,37(2),124131.CrossRefGoogle ScholarPubMed
Schmittmann, V. D.,Cramer, A. O.,Waldorp, L. J.,Epskamp, S.,Kievit, R. A., &Borsboom, D.(2013).Deconstructing the construct: A network perspective on psychological phenomena.New Ideas in Psychology,31(1),4353.CrossRefGoogle Scholar
Schwarz, G.etal(1978).Estimating the dimension of a model.The Annals of Statistics,6(2),461464.CrossRefGoogle Scholar
Seeman, T.Ryff, C. D., &Singer, B. H.(2001).How do others get under our skin? Social relationships and health.Series in affecive science. Emotion, social relations, and health,Oxford:Oxford University Press.189210.Google Scholar
Sewell, D. K., &Chen, Y.(2015).Latent space models for dynamic networks.Journal of the American Statistical Association,110(512),16461657.CrossRefGoogle Scholar
Shalizi, C. R., &Rinaldo, A.(2013).Consistency under sampling of exponential random graph models.Annals of Statistics,41(2),508535.CrossRefGoogle ScholarPubMed
Snijders, T. A.(2002).Markov chain Monte Carlo estimation of exponential random graph models.Journal of Social Structure,3(2),140.Google Scholar
Snijders, T. A.(2011).Statistical models for social networks.Annual Review of Sociology,37 131153.CrossRefGoogle Scholar
Su, L.,Lu, W.,Song, R., &Huang, D.(2020).Testing and estimation of social network dependence with time to event data.Journal of the American Statistical Association,115(530),570582.CrossRefGoogle ScholarPubMed
Sweet, T. M.(2019).Modeling social networks as mediators: A mixed membership stochastic blockmodel for mediation.Journal of Educational and Behavioral Statistics,44(2),210240.CrossRefGoogle Scholar
Sweet, T. M., &Zheng, Q.(2018).Estimating the effects of network covariates on subgroup insularity with a hierarchical mixed membership stochastic blockmodel.Social Networks,52 100114.CrossRefGoogle Scholar
Umberson, D.,Crosnoe, R., &Reczek, C.(2010).Social relationships and health behavior across the life course.Annual Review of Sociology,36 139157.CrossRefGoogle Scholar
Valeri, L., &VanderWeele, T. J.(2013).Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros.Psychological Methods,18(2),137500.CrossRefGoogle ScholarPubMed
VanderWeele, T. J.(2015).Explanation in causal inference: Methods for mediation and interaction,Oxford:Oxford University Press.Google Scholar
VanderWeele, T. J., &Vansteelandt, S.(2009).Conceptual issues concerning mediation, interventions and composition.Statistics and Tts Interface,2(4),457468.CrossRefGoogle Scholar
Waldinger, R. J.,Cohen, S.,Schulz, M. S., &Crowell, J. A.(2015).Security of attachment to spouses in late life: Concurrent and prospective links with cognitive and emotional well-being.Clinical Psychological Science,3(4),516529.CrossRefGoogle Scholar
Wang, L., &Preacher, K. J.(2015).Moderated mediation analysis using Bayesian methods.Structural Equation Modeling: A Multidisciplinary Journal,22(2),249263.CrossRefGoogle Scholar
Wang, L., &Zhang, Z.(2011).Estimating and testing mediation effects with censored data.Structural Equation Modeling: A Multidisciplinary Journal,18(1),1834.CrossRefGoogle Scholar
Wasserman, S., &Faust, K.(1994).Social network analysis: Methods and applications,Cambridge:Cambridge university Press.CrossRefGoogle Scholar
Westaby, J. D.,Pfaff, D. L., &Redding, N.(2014).Psychology and social networks: A dynamic network theory perspective.American Psychologist,69(3),269284.CrossRefGoogle ScholarPubMed
Yang, J., McAuley, J. & Leskovec, J. (2013). Community detection in networks with node attributes. In: Data mining (ICDM), 2013 IEEE 13th international conference on (pp. 1151–1156). https://doi.org/10.1109/ICDM.2013.167.CrossRefGoogle Scholar
Yu, Q.,Medeiros, K. L.,Wu, X., &Jensen, R. E.(2018).Nonlinear predictive models for multiple mediation analysis: With an application to explore ethnic disparities in anxiety and depression among cancer survivors.Psychometrika,83(4),9911006.CrossRefGoogle ScholarPubMed
Yuan, Y., &MacKinnon, D. P.(2009).Bayesian mediation analysis.Psychological Methods,14(4),301322.CrossRefGoogle ScholarPubMed
Zhang, Q., &Phillips, B.(2018).Three-level longitudinal mediation with nested units: How does an upper-level predictor influence a lower-level outcome via an upper-level mediator over time?.Multivariate Behavioral Research,53(5),655675.CrossRefGoogle ScholarPubMed
Zhang, Q.,Wang, L., &Bergeman, C.(2017).Multilevel autoregressive mediation models: Specification, estimation, and applications.Psychological Methods,23(2),278297.CrossRefGoogle ScholarPubMed
Zhao, Y.,Levina, E., &Zhu, J.etal(2012).Consistency of community detection in networks under degree-corrected stochastic block models.The Annals of Statistics,40(4),22662292.CrossRefGoogle Scholar