Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:51:19.329Z Has data issue: false hasContentIssue false

Simplimax: Oblique Rotation to an Optimal Target with Simple Structure

Published online by Cambridge University Press:  01 January 2025

Henk A. L. Kiers*
Affiliation:
University of Groningen
*
Requests for reprints should be sent to Henk A. L. Kiers, Department of Psychology (SPA), Grote Kruisstr.2/1, 9712 TS Groningen, THE NETHERLANDS.

Abstract

Factor analysis and principal component analysis are usually followed by simple structure rotations of the loadings. These rotations optimize a certain criterion (e.g., varimax, oblimin), designed to measure the degree of simple structure of the pattern matrix. Simple structure can be considered optimal if a (usually large) number of pattern elements is exactly zero. In the present paper, a class of oblique rotation procedures is proposed to rotate a pattern matrix such that it optimally resembles a matrix which has an exact simple pattern. It is demonstrated that this method can recover relatively complex simple structures where other well-known simple structure rotation techniques fail.

Type
Original Paper
Copyright
Copyright © 1994 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences. The author is obliged to Jos ten Berge for helpful comments on an earlier version.

References

Browne, M. W. (1972). Orthogonal rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 115120.CrossRefGoogle Scholar
Browne, M. W. (1972). Oblique rotation to a partially specified target. British Journal of Mathematical and Statistical Psychology, 25, 207212.CrossRefGoogle Scholar
Carroll, J. B. (1957). Biquartimin criterion for rotation to oblique simple structure in factor analysis. Science, 126, 11141115.CrossRefGoogle ScholarPubMed
Clarkson, D. B., Jennrich, R. I. (1988). Quartic rotation criteria and algorithms. Psychometrika, 53, 251259.CrossRefGoogle Scholar
Cliff, N. (1966). Orthogonal rotation to congruence. Psychometrika, 31, 3342.CrossRefGoogle Scholar
Cureton, E. E., Mulaik, S. A. (1975). The weighted varimax rotation and the Promax rotation. Psychometrika, 40, 183195.CrossRefGoogle Scholar
Digman, J. M. (1966). The procrustes class of factor-analytic transformations. Unpublished manuscript, University of Hawaii.Google Scholar
Gruvaeus, G. T. (1970). A general approach to Procrustes pattern rotation. Psychometrika, 35, 493505.CrossRefGoogle Scholar
Harman, H. H. (1976). Modern factor analysis 3rd ed.,, Chicago: University of Chicago Press.Google Scholar
Harris, C. W., Kaiser, H. F. (1964). Oblique factor analytic solutions by orthogonal transformations. Psychometrika, 29, 347362.CrossRefGoogle Scholar
Hendrickson, A. E., White, P. O. (1964). PROMAX: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology, 17, 6570.CrossRefGoogle Scholar
Holzinger, K. J., Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor solution, Chicago: University of Chicago, Department of Education.Google Scholar
Jennrich, R. I., Sampson, P. F. (1966). Rotation for simple loadings. Psychometrika, 31, 313323.CrossRefGoogle ScholarPubMed
Jöreskog, K. G. (1965). On rotation to a specified simple structure, Princeton, NJ: ETS.Google Scholar
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187200.CrossRefGoogle Scholar
Kashiwagi, S. (1989). Orthogonal and oblique Procrustes factor rotation methods based on the procedure of single plane assuming the multiple classification of test vectors, Japanese psychological monographs 19, Tokyo: University Press.Google Scholar
Lawley, D. N., Maxwell, A. E. (1964). Factor transformation methods. British Journal of Statistical Psychology, 17, 97103.CrossRefGoogle Scholar
Mulaik, S. A. (1972). The foundations of factor analysis, New York: McGraw-Hill.Google Scholar
Shiba, S. (1972). Factor Analysis, Tokyo: University of Tokyo Press.Google Scholar
Thurstone, L. L. (1947). Multiple factor analysis, Chicago: University of Chicago Press.Google Scholar