Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:47:30.140Z Has data issue: false hasContentIssue false

Robust Mean and Covariance Structure Analysis Through Iteratively Reweighted Least Squares

Published online by Cambridge University Press:  02 January 2025

Ke-Hai Yuan*
Affiliation:
University of North Texas
Peter M. Bentler
Affiliation:
University of California, Los Angeles
*
Requests for reprints should be sent to Ke-Hai Yuan, Department of Psychology, University of North Texas, PO Box 311280, Denton TX 76203-1280.

Abstract

Robust schemes in regression are adapted to mean and covariance structure analysis, providing an iteratively reweighted least squares approach to robust structural equation modeling. Each case is properly weighted according to its distance, based on first and second order moments, from the structural model. A simple weighting function is adopted because of its flexibility with changing dimensions. The weight matrix is obtained from an adaptive way of using residuals. Test statistic and standard error estimators are given, based on iteratively reweighted least squares. The method reduces to a standard distribution-free methodology if all cases are equally weighted. Examples demonstrate the value of the robust procedure.

Type
Original Paper
Copyright
Copyright © 2000 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors acknowledge the constructive comments of three referees and the Editor that lead to an improved version of the paper. This work was supported by National Institute on Drug Abuse Grants DA01070 and DA00017 and by the University of North Texas Faculty Research Grant Program.

References

Ammann, L. P. (1989). Robust principal components. Communications in Statistics: Simulation and Computation, 18, 857874CrossRefGoogle Scholar
Bentler, P. M. (1995). EQS structural equations program manual. Encino, CA: Multivariate SoftwareGoogle Scholar
Bentler, P. M., & Dudgeon, P. (1996). Covariance structure analysis: Statistical practice, theory, directions. Annual Review of Psychology, 47, 563592CrossRefGoogle Scholar
Berkane, M., & Bentler, P. M. (1988). Estimation of contamination parameters and identification of outliers in multivariate data. Sociological Methods & Research, 17, 5564CrossRefGoogle Scholar
Birch, J. B., & Myers, R. H. (1982). Robust analysis of covariance. Biometrics, 38, 699713CrossRefGoogle ScholarPubMed
Bollen, K. A. (1987). Outliers and improper solutions: A confirmatory factor analysis example. Sociological Methods & Research, 15, 375384CrossRefGoogle Scholar
Bollen, K. A. (1989). Structural equations with latent variables. New York: WileyCrossRefGoogle Scholar
Bollen, K. A., & Arminger, G. (1991). Observational residuals in factor analysis and structural equation models. Sociological methodology, 21, 235262CrossRefGoogle Scholar
Breckler, S. J. (1990). Application of covariance structure modeling in psychology: Cause for concern?. Psychological Bulletin, 107, 260273CrossRefGoogle ScholarPubMed
Browne, M. W. (1982). Covariance structures. In Hawkins, D. M. (Eds.), Topics in applied multivariate analysis (pp. 72141). Cambridge: Cambridge University PressCrossRefGoogle Scholar
Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283CrossRefGoogle ScholarPubMed
Cadigan, N. G. (1995). Local influence in structural equation models. Structural Equation Modeling, 2, 1330CrossRefGoogle Scholar
Campbell, N. A. (1980). Robust procedures in multivariate analysis I: Robust covariance estimation. Applied Statistics, 29, 231237CrossRefGoogle Scholar
Campbell, N. A. (1982). Robust procedures in multivariate analysis II: Robust canonical variate analysis. Applied Statistics, 31, 18CrossRefGoogle Scholar
Carroll, R. J. (1979). On estimating variances of robust estimators when the errors are asymmetric. Journal of the American Statistical Association, 74, 674679CrossRefGoogle Scholar
Curran, P. S. (1994). The robustness of confirmatory factor analysis to model misspecification and violations of normality. Unpublished doctoral dissertation, Arizona State University.Google Scholar
Curran, P. S., West, S. G., & Finch, J. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 1629CrossRefGoogle Scholar
Devlin, S. J., Gnanadesikan, R., & Kettenring, J. R. (1981). Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association, 76, 354362CrossRefGoogle Scholar
Gabriel, K. R., Odoroff, L. (1984). Resistant lower rank approximation of matrices. In Diday, E., Jambu, M., Lebart, L., Pages, J., & Tomassone, R. (Eds.), Data analysis and informatics III (pp. 2330). Amsterdam: North-HollandGoogle Scholar
Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistent alternatives (with discussion). Journal of the Royal Statistical Society, Series B, 46, 149192CrossRefGoogle Scholar
Gross, A. M. (1977). Confidence intervals for bisquare regression estimates. Journal of the American Statistical Association, 72, 341354CrossRefGoogle Scholar
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York: WileyGoogle Scholar
Heiser, W. J. (1987). Correspondence analysis with least absolute residuals. Computational Statistics & Data Analysis, 5, 337356CrossRefGoogle Scholar
Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding robust and exploratory data analysis. New York: WileyGoogle Scholar
Holland, P. W., & Welsch, R. E. (1977). Robust regression using iteratively reweighted least-squares. Communications in Statistics-Theory and Methods, Series A, 6, 813827CrossRefGoogle Scholar
Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The stability of a bi-factor solution. Chicago: University of ChicagoGoogle Scholar
Hu, L., Bentler, P. M., & Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted?. Psychological Bulletin, 112, 351362CrossRefGoogle ScholarPubMed
Huba, G. J., & Harlow, L. L. (1987). Robust structural equation models: Implications for developmental psychology. Child Development, 58, 147166CrossRefGoogle Scholar
Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73101CrossRefGoogle Scholar
Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. Annals of Statistics, 1, 799821CrossRefGoogle Scholar
Huber, P. J. (1981). Robust statistics. New York: WileyCrossRefGoogle Scholar
Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183202CrossRefGoogle Scholar
Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In Krishnaiah, P. R. (Eds.), Applications of statistics (pp. 265287). Amsterdam: North HollandGoogle Scholar
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8 user's reference guide. Chicago: Scientific Software InternationalGoogle Scholar
Kharin, Y. S. (1996). Robustness in discriminant analysis. In Rieder, H. (Eds.), Robust statistics, data analysis, and computer intensive methods (pp. 225234). New York: SpringerCrossRefGoogle Scholar
Lange, K. L., Little, R. J. A., & Taylor, J. M. G. (1989). Robust statistical modeling using thet distribution. Journal of the American Statistical Association, 84, 881896Google Scholar
Lee, S.-Y., & Jennrich, R. I. (1979). A study of algorithms for covariance structure analysis with specific comparisons using factor analysis. Psychometrika, 44, 99114CrossRefGoogle Scholar
Lee, S.-Y., & Wang, S. J. (1996). Sensitivity analysis of structural equation models. Psychometrika, 61, 93108CrossRefGoogle Scholar
Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New York: Academic PressGoogle Scholar
Maronna, R. A. (1976). Robust M-estimators of multivariate location and scatter. Annals of Statistics, 4, 5167CrossRefGoogle Scholar
Newcomb, M. D., & Bentler, P. M. (1988). Consequences of adolescent drug use: Impact on the lives of young adults. Beverly Hills: Sage PublicationsGoogle Scholar
Rousseeuw, P. J., & Leroy, A. M. (1987). Robust regression and outlier detection. New York: WileyCrossRefGoogle Scholar
Rousseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85, 633639CrossRefGoogle Scholar
Rubin, D. B. (1983). Iteratively reweighted least squares. In Johnson, N. L., & Kotz, S. (Eds.), Encyclopedia of statistical sciences, Volume 4 (pp. 272275). New York: WileyGoogle Scholar
Stein, J. A., Newcomb, M. D., & Bentler, P. M. (1996). Initiation and maintenance of tobacco smoking: Changing personality correlates in adolescence and young adulthood. Journal of Applied Social Psychology, 26, 160187CrossRefGoogle Scholar
Tanaka, Y., Watadani, S., & Moon, S. H. (1991). Influence in covariance structure analysis: with an application to confirmatory factor analysis. Communication in Statistics-Theory and Method, 20, 38053821CrossRefGoogle Scholar
Tyler, D. E. (1983). Robustness and efficiency properties of scatter matrices. Biometrika, 70, 411420CrossRefGoogle Scholar
Verboon, P., & Heiser, W. J. (1994). Resistant lower rank approximation of matrices by iterative majorization. Computational Statistics & Data Analysis, 18, 457467CrossRefGoogle Scholar
Wilcox, R. R. (1997). Introduction to robust estimation and hypothesis testing. San Diego: Academic PressGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1997). Mean and covariance structure analysis: Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767774CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1997). Improving parameter tests in covariance structure analysis. Computational Statistics & Data Analysis, 26, 177198CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1998). Robust mean and covariance structure analysis. British Journal of Mathematical and Statistical Psychology, 51, 6388CrossRefGoogle ScholarPubMed
Yuan, K.-H., & Bentler, P. M. (1998). Structural equation modeling with robust covariances. Sociological Methodology, 28, 363396CrossRefGoogle Scholar
Yuan, K.-H., & Bentler, P. M. (1998). Normal theory based test statistics in structural equation modeling. British Journal of Mathematical and Statistical Psychology, 51, 289309CrossRefGoogle Scholar
Yung, Y. F. (1997). Finite mixtures in confirmatory factor-analysis models. Psychometrika, 62, 297330CrossRefGoogle Scholar
Yung, F.-Y., & Bentler, P. M. (1996). Bootstrapping techniques in analysis of mean and covariance structures. In Marcoulides, G. A., & Schumacker, R. E. (Eds.), Advanced structural equation modeling techniques (pp. 195226). New Jersey: ErlbaumGoogle Scholar