Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T04:44:38.277Z Has data issue: false hasContentIssue false

A Riemannian Optimization Algorithm for Joint Maximum Likelihood Estimation of High-Dimensional Exploratory Item Factor Analysis

Published online by Cambridge University Press:  01 January 2025

Yang Liu*
Affiliation:
University of Maryland
*
Correspondence should be made to Yang Liu, Department of Human Development and Quantitative Methodology, University of Maryland, College Park, USA. Email: yliu87@umd.edu

Abstract

There has been regained interest in joint maximum likelihood (JML) estimation of item factor analysis (IFA) recently, primarily due to its efficiency in handling high-dimensional data and numerous latent factors. It has been established under mild assumptions that the JML estimator is consistent as both the numbers of respondents and items tend to infinity. The current work presents an efficient Riemannian optimization algorithm for JML estimation of exploratory IFA with dichotomous response data, which takes advantage of the differential geometry of the fixed-rank matrix manifold. The proposed algorithm takes substantially less time to converge than a benchmark method that alternates between gradient ascent steps for person and item parameters. The performance of the proposed algorithm in the recovery of latent dimensionality, response probabilities, item parameters, and factor scores is evaluated via simulations.

Type
Theory and Methods
Copyright
Copyright © 2020 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-020-09711-8) contains supplementary material, which is available to authorized users.

References

Absil, P. -A., Mahony, R., & Sepulchre, R. (2008). Optimization algorithms on matrix manifolds. Princeton: Princeton University Press. CrossRefGoogle Scholar
Absil, P. -A., & Malick, J. (2012). Projection-like retractions on matrix manifolds. SIAM Journal on Optimization. 221, 135158. CrossRefGoogle Scholar
Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society: Series B (Methodological). 32 2), 283301. CrossRefGoogle Scholar
Baker, F. B., & Kim, S. -H. (2004). Item response theory: Parameter estimation techniques. Boca Raton: CRC Press. CrossRefGoogle Scholar
Bartholomew, D. J., Steele, F., Galbraith, J., & Moustaki, I. (2008). Analysis of multivariate social science data. Boca Raton: CRC Press. CrossRefGoogle Scholar
Bertsekas, D. P. (1999). Nonlinear programming. Belmont: Athena Scientific. Google Scholar
Björck, A., & Golub, G. H. (1973). Numerical methods for computing angles between linear subspaces. Mathematics of Computation. 27 123), 579594. CrossRefGoogle Scholar
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika. 464, 443459. CrossRefGoogle Scholar
Bock, R. D., & Lieberman, M. Fitting a response model for n \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} dichotomously scored items (1970). Psychometrika. 352, 179197. Google Scholar
Borckmans, P. B., Selvan, S. E., Boumal, N., & Absil, P. -A. (2014). A Riemannian subgradient algorithm for economic dispatch with valve-point effect. Journal of Computational and Applied Mathematics. 255, 848866. CrossRefGoogle Scholar
Browne, M. W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research. 361, 111150. CrossRefGoogle Scholar
Cai, L. (2010). High-dimensional exploratory item factor analysis by a Metropolis–Hastings Robbins–Monro algorithm. Psychometrika. 751, 3357. CrossRefGoogle Scholar
Cai, T., & Zhou, W. X. (2013). A max-norm constrained minimization approach to 1-bit matrix completion. The Journal of Machine Learning Research. 14 1), 36193647. Google Scholar
Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational Mathematics. 96, 717772. CrossRefGoogle Scholar
Carpentier, A., Klopp, O., Löffler, M., & Nickl, R. (2018). Adaptive confidence sets for matrix completion. Bernoulli. 244A, 24292460. Google Scholar
Chen, Y., Li, X., & Zhang, S. (2018). Joint maximum likelihood estimation for high-dimensional exploratory item factor analysis. Psychometrika (Advance Online Publication). https://doi.org/10.1007/s11336-018-9646-5.CrossRefGoogle Scholar
Chen, Y., Li, X., & Zhang, S., (2019). Structured latent factor analysis for large-scale data: Identifiability, estimability, and their implications. Journal of the American Statistical Association. (Advance Online Publication) https://doi.org/10.1080/01621459.2019.1635485 CrossRefGoogle Scholar
Curran, P. J., & Hussong, A. M. (2009). Integrative data analysis: The simultaneous analysis of multiple data sets. Psychological Methods. 142, 81100. CrossRefGoogle Scholar
Davenport, M. A., Plan, Y., Van Den Berg, E.,& Wootters, M. (2014). 1-bit matrix completion. Information and Inference: A Journal of the IMA. 33, 189223. CrossRefGoogle Scholar
de Leeuw, J. (2006). Principal component analysis of binary data by iterated singular value decomposition. Computational Statistics & Data Analysis. 501, 2139. CrossRefGoogle Scholar
Fan, J., Gong, W., & Zhu, Z. (2019). Generalized high-dimensional trace regression via nuclear norm regularization. Journal of Econometrics. 212 1), 177202. CrossRefGoogle Scholar
Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. The Annals of Statistics. 323, 928961. Google Scholar
Fox, J. -P. (2005). Multilevel IRT using dichotomous and polytomous response data. British Journal of Mathematical and Statistical Psychology. 581, 145172. CrossRefGoogle Scholar
Golub, G., & Van Loan, C. (2013). Matrix computations 4 Baltimore: Johns Hopkins University Press. CrossRefGoogle Scholar
Haberman, S. J. (2006). Adaptive quadrature for item response models (Tech. Rep. No. RR-06-29). Princeton: ETS.Google Scholar
Hofer, S. M., & Piccinin, A. M. (2009). Integrative data analysis through coordination of measurement and analysis protocol across independent longitudinal studies. Psychological Methods. 142, 150CrossRefGoogle Scholar
Huang, W., Gallivan, K. A., & Absil, P. -A. (2015). A Broyden class of quasi-newton methods for Riemannian optimization. SIAM Journal on Optimization. 253, 16601685. CrossRefGoogle Scholar
Jeon, M., Kaufman, C., & Rabe-Hesketh, S. (2019). Monte Carlo local likelihood approximation. Biostatistics. 201, 164179. Google Scholar
Klopp, O. (2015). Matrix completion by singular value thresholding: Sharp bounds. Electronic Journal of Statistics. 92, 23482369. Google Scholar
Klopp, O., Lafond, J., Moulines, É, & Salmon, J. (2015). Adaptive multinomial matrix completion. Electronic Journal of Statistics. 92, 29502975. Google Scholar
Koopmans, T. C., & Reiersøl, O. (1950). The identification of structural characteristics. The Annals of Mathematical Statistics. 212, 165181. CrossRefGoogle Scholar
Liu, C., & Boumal, N. (2019). Simple algorithms for optimization on Riemannian manifolds with constraints. Applied Mathematics & Optimization 10.1007/s00245-019-09564-3 Google Scholar
Liu, Y., Magnus, B., Quinn, H., & Thissen, D. Hughes, D., Irwing, P., & Booth, T. (2018). Multidimensional item response theory. Handbook of psychometric testing. Hoboken: Wiley. Google Scholar
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Mahwah: Routledge. Google Scholar
Magnus, J., & Neudecker, H. (1999). Matrix differential calculus with applications in statistics and econometrics. New York: Wiley. Google Scholar
McDonald, R. P. (1981). The dimensionality of tests and items. British Journal of Mathematical and Statistical Psychology. 341, 100117. CrossRefGoogle Scholar
Monroe, S., & Cai, L. (2014). Estimation of a Ramsay-curve item response theory model by the Metropolis–Hastings Robbins–Monro algorithm. Educational and Psychological Measurement. 742, 343369. CrossRefGoogle Scholar
Neyman, J., & Scott, E. L., (1948). Consistent estimates based on partially consistent observations. Econometrica: Journal of the Econometric Society, 16(1), 1–32. CrossRefGoogle Scholar
O’Rourke, S., Vu, V., & Wang, K. (2018). Random perturbation of low rank matrices: Improving classical bounds. Linear Algebra and its Applications. 540, 2659. CrossRefGoogle Scholar
Pinar, , & Zenios, S. A. (1994). On smoothing exact penalty functions for convex constrained optimization. SIAM Journal on Optimization. 43, 486511. CrossRefGoogle Scholar
Polak, E., & Ribière, G. (1969). Note sur la convergence de méthodes de directions conjuguées. Revue Française d’Informatique et de Recherche Opérationnelle. Série Rouge. 316, 3543. Google Scholar
R Core Team. (2018). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. https://www.R-project.org/ Google Scholar
Reckase, M. (2009). Multidimensional item response theory. New York: Springer. CrossRefGoogle Scholar
Revelle, W., Wilt, J., & Rosenthal, A. Gruszka, A., Matthews, G., & Szymura, B. (2010). Individual differences in cognition: New methods for examining the personality-cognition link. Handbook of individual differences in cognition. Berlin: Springer. 2749. CrossRefGoogle Scholar
Schilling, S., & Bock, R. D. (2005). High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature. Psychometrika. 703, 533555. Google Scholar
Shalit, U., Weinshall, D., & Chechik, G. (2012). Online learning in the embedded manifold of low-rank matrices. Journal of Machine Learning Research. 13, Feb 429458. Google Scholar
Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika. 523, 393408. CrossRefGoogle Scholar
Thissen, D., & Steinberg, L. Millsap, R., & Maydeu-Olivares, A. (2009). Item response theory. The sage handbook of quantitative methods in psychology. London: Sage Publications. 148177. CrossRefGoogle Scholar
Vandereycken, B. (2013). Low-rank matrix completion by Riemannian optimization. SIAM Journal on Optimization. 232, 12141236. CrossRefGoogle Scholar
Wirth, R., & Edwards, M. C. (2007). Item factor analysis: Current approaches and future directions. Psychological methods. 121, 5879. CrossRefGoogle Scholar
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement. 332, 102117. CrossRefGoogle Scholar
Woods, C. M., & Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika. 712, 281301. CrossRefGoogle Scholar
Yu, Y., Wang, T., & Samworth, R. J. (2015). A useful variant of the Davis–Kahan theorem for statisticians. Biometrika. 1022, 315323. CrossRefGoogle Scholar
Zhang, S., Chen, Y., & Liu, Y. (2020). An improved stochastic EM algorithm for large-scale full-information item factor analysis. British Journal of Mathematical and Statistical Psychology. 73 1), 4471. 30511445 CrossRefGoogle ScholarPubMed
Supplementary material: File

Liu supplementary material

Liu supplementary material
Download Liu supplementary material(File)
File 14.5 KB