Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T22:03:59.011Z Has data issue: false hasContentIssue false

Relationships Among Several Methods of Linearly Constrained Correspondence Analysis

Published online by Cambridge University Press:  01 January 2025

Yoshio Takane*
Affiliation:
McGill University
Haruo Yanai
Affiliation:
The National Center for University Entrance Examination
Shinichi Mayekawa
Affiliation:
The National Center for University Entrance Examination
*
Requests for reprints should be sent to Yoshio Takane, Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec H3A IB1 CANADA.

Abstract

This paper shows essential equivalences among several methods of linearly constrained correspondence analysis. They include Fisher's method of additive scoring, Hayashi's second type of quantification method, ter Braak's canonical correspondence analysis, Nishisato's type of quantification method, ter Braak's canonical correspondence analysis, Nishisato's ANOVA of categorical data, correspondence analysis of manipulated contingency tables, Böckenholt and Böckenholt's least squares canonical analysis with linear constraints, and van der Heijden and Meijerink's zero average restrictions. These methods fall into one of two classes of methods corresponding to two alternative ways of imposing linear constraints, the reparametrization method and the null space method. A connection between the two is established through Khatri's lemma.

Type
Original Paper
Copyright
Copyright © 1991 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The work reported in this paper has been supported by grant A6394 from the Natural Sciences and Engineering Research Council of Canada to the first author. We wish to thank Carolyn Anderson, Ulf Böckenholt, Henk Kiers, Shizuhiko Nishisato, Jim Ramsay, Tadashi Shibayama, Cajo ter Braak, and Peter van der Heijden for their helpful comments on earlier drafts of this paper.

References

Böckenholt, U., Böckenholt, I. (1990). Canonical analysis of contingency tables with linear constraints. Psychometrika, 55, 633639.CrossRefGoogle Scholar
Carroll, J. D. (1973). Models and algorithms for multidimensional scaling, conjoint measurement and related techniques. In Green, P. E., Wind, Y. (Eds.), Multiattribute decisions in marketing: A measurement approach (pp. 299387). New York: Dryden Press.Google Scholar
Carroll, J. D., Pruzansky, S., Kruskal, J. B. (1980). CANDELINC: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters. Psychometrika, 45, 324.CrossRefGoogle Scholar
Cazes, P., Chessel, D., Doledec, S. (1988). L'analyse des correspondances internes d'un tableau partitionné: Son usage en hydrobiologie [Internal correspondence analysis of a partitioned table: Its use in hydrobiology]. Revue des Statistique Appliquée, 36, 3954.Google Scholar
Chessel, D., Lebreton, J. D., Yoccoz, N. (1987). Propriétés de l'analyse canonique des correspondances: Une illustration en hydrobiologie [Properties of canonical correspondence analysis: An illustration in hydrobiology.]. Revue des Statistique Appliquée, 35, 5572.Google Scholar
D'Ambra, L., Lauro, N. (1989). Nonsymmetrical analysis of three-way contingency tables. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 301315). Amsterdam: Elsevier.Google Scholar
de Leeuw, J. (1984). Fixed rank matrix approximation with singular weights matrices. Computational Statistics Quarterly, 1, 312.Google Scholar
DeSarbo, W. S., Carroll, J. D., Lehmann, D. R., O'Shaughnessy, J. (1982). Three-way multivariate conjoint analysis. Marketing Science, 1, 323350.CrossRefGoogle Scholar
DeSarbo, W. S., Rao, V. R. (1984). GENFOLD2: A set of models and algorithms for the GENeral UnFOLDing analysis of preference/dominance data. Journal of Classification, 1, 147186.CrossRefGoogle Scholar
Fisher, R. A. (1936). The use of multiple measurement in taxonomic problems. Annals of Eugenics, 7, 179188.CrossRefGoogle Scholar
Fisher, R. A. (1948). Statistical methods for research workers 10th ed., Enlarged edition,, London: Oliver and Boyd.Google Scholar
Gilula, Z., Haberman, S. J. (1988). The analysis of contingency tables by restricted canonical and restricted association models. Journal of the American Statistical Association, 83, 760771.CrossRefGoogle Scholar
Greenacre, M. J. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Hayashi, C. (1950). On the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 2, 3547.CrossRefGoogle Scholar
Hayashi, C. (1952). On the prediction of phenomena from qualitative data and the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 3, 6998.CrossRefGoogle Scholar
Heiser, W. J. (1981). Unfolding analysis of proximity data, Leiden, The Netherlands: DSWO Press.Google Scholar
Heiser, W. J. (1987). Joint ordination of species and sites: The unfolding technique. In Legendre, P., Legendre, L. (Eds.), Developments in numerical ecology (pp. 189221). Berlin: Springer.CrossRefGoogle Scholar
Israëls, A. (1987). Eigenvalue techniques for qualitative data, Leiden, The Netherlands: DSWO Press.Google Scholar
Johnson, P. O. (1950). The quantification of qualitative data in discriminant analysis. Journal of the American Statistical Association, 45, 6576.CrossRefGoogle Scholar
Khatri, C. G. (1966). A note on a MANOVA model applied to problems in growth curves. Annals of the Institute of Statistical Mathematics, 18, 7586.CrossRefGoogle Scholar
Khatri, C. G. (1988). Some properties of BLUE in a linear model and canonical correlations associated with linear transformations, Pittsburgh: University of Pittsburgh, Center for Multivariate Analysis.Google Scholar
Lebreton, J. D., Chessel, D., Prodon, R., Yoccoz, N. (1988). L'analyse des relations espèces-milieu par l'analyse canonique des correspondences, I. Variables de milieu quantitatives [Analysis of speciesenvironment relations by canonical correspondence analysis, I. Quantitative environment variables.]. Acta Oecologica, 9, 5367.Google Scholar
Leclerc, A. (1975). L'analyse des correspondence sur juxtaposition de tableaux de contingence [Correspondence analysis of juxtaposed contingency tables]. Revue de Statistique Appliquée, 23, 516.Google Scholar
Maxwell, A. E. (1961). Canonical variate analysis when the variables are dichotomous. Educational and Psychological Measurement, 21, 259271.CrossRefGoogle Scholar
Nishisato, S. (1971). Analysis of variance through optimal scaling. In Carter, C. S., Dwivedi, D. W., Felligi, I. P., Fraser, D. A. S., McGregor, J. R., Sprott, D. A. (Eds.), Statistics '71 Canada, Proceedings of the first Canadian conference in applied statistics (pp. 306316). Montreal: Sir George Williams University Press.Google Scholar
Nishisato, S. (1972). Analysis of variance of categorical data through selective scaling. Abstract Guide, 20th International Congress of Psychology, Tokyo, p. 279.Google Scholar
Nishisato, S. (1980). Analysis of categorical data: Dual scaling and its applications, Toronto: University of Toronto Press.CrossRefGoogle Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling. Journal of the Royal Statistical Society, Series A, 145, 285312.CrossRefGoogle Scholar
Rao, C. R. (1973). Linear statistical inference and its applications, New York: Wiley.CrossRefGoogle Scholar
Scheffé, H. (1959). The analysis of variance, New York: Wiley.Google Scholar
Schmoyer, R. L. (1984). Everyday application of the cell means model. The American Statistician, 38, 4952.CrossRefGoogle Scholar
Searle, S. R. (1971). Linear models, New York: Wiley.Google Scholar
Seber, G. A. F. (1977). Linear regression analysis, New York: Wiley.Google Scholar
Seber, G. A. F. (1984). Multivariate observations, New York: Wiley.CrossRefGoogle Scholar
Takane, Y. (1980). Analysis of categorizing behavior by a quantification method. Behaviormetrika, 8, 7586.CrossRefGoogle Scholar
Takane, Y. (1987). Analysis of contingency tables by ideal point discriminant analysis. Psychometrika, 52, 493513.CrossRefGoogle Scholar
Takane, Y. (1990). Constrained principal component analysis and its applications. Paper submitted for publication.Google Scholar
Takane, Y., Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables. Psychometrika, 56, 97120.CrossRefGoogle Scholar
ter Braak, C. J. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 11671179.CrossRefGoogle Scholar
ter Braak, C. J. F. (1988). Partial canonical correspondence analysis. In Bock, H. H. (Eds.), Classification and related methods of data analysis (pp. 551558). Amsterdam: North-Holland.Google Scholar
Timm, N. H. (1975). Multivariate analysis with applications in education and psychology, Belmont, CA: Wadsworth.Google Scholar
van den Wollenberg, A. L. (1977). Redundancy analysis: An alternative for canonical correlation analysis. Psychometrika, 42, 207219.CrossRefGoogle Scholar
van der Burg, E., de Leeuw, J., Verdegaal, R. (1988). Homogeneity analysis with k sets of variables: An alternating least squares method with optimal scaling features. Psychometrika, 53, 177197.CrossRefGoogle Scholar
van der Heijden, P. G. M., de Falguerolles, A., de Leeuw, J. (1989). A combined approach to contingency table analysis using correspondence analysis and log-linear analysis. Applied Statistics, 38, 249292.CrossRefGoogle Scholar
van der Heijden, P. G. M., de Leeuw, J. (1985). Correspondence analysis used complementary to loglinear analysis. Psychometrika, 50, 429447.CrossRefGoogle Scholar
van der Heijden, P. G. M., Meijerink, F. (1989). Generalized correspondence analysis of multi-way contingency tables and multi-way (super-) indicator matrices. In Coppi, R., Bolasco, S. (Eds.), Multiway data analysis (pp. 185202). Amsterdam: Elsevier.Google Scholar
van der Heijden, P. G. M., Worsley, K. J. (1988). Comment on “Correspondence analysis used complementary to loglinear analysis”. Psychometrika, 53, 287291.CrossRefGoogle Scholar
Yanai, H. (1986). Some generalizations of correspondence analysis in terms of projection operators. In Diday, E., Escoufier, Y., Lebart, L., Pagés, J., Schectman, Y., Tomassone, R. (Eds.), Data analysis and informatics IV (pp. 193207). Amsterdam: North-Holland.Google Scholar
Yanai, H. (1988). Partial correspondence analysis and its properties. In Hayashi, C., Jambu, M., Diday, E., Ohsumi, N. (Eds.), Recent developments in clustering and data analysis (pp. 259266). Boston: Academic Press.CrossRefGoogle Scholar
Yanai, H. (1990). Some generalized forms of least squares g-inverse, minimum norm g-inverse and Moore-Penrose inverse matrices. Computational Statistics and Data Analysis, 10, 251260.CrossRefGoogle Scholar
Yanai, H., & Takane, Y. (1990). Canonical correlation analysis with linear constraints. Paper submitted for publication.Google Scholar
Yanai, H., Takeuchi, K. (1983). Projection matrices, generalized inverse and singular value decomposition, Tokyo: University of Tokyo Press (in Japanese)Google Scholar