Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T04:04:24.790Z Has data issue: false hasContentIssue false

Quantitative Analysis of Qualitative Data

Published online by Cambridge University Press:  01 January 2025

Forrest W. Young*
Affiliation:
L. L. Thurstone Psychometric Laboratory University of North Carolina At Chapel Hill
*
Requests for reprints should be sent to Forrest Young, Psychometric Lab, UNC, Davie Hall, 013-A, Chapel Hill, N.C. 27514.

Abstract

This paper presents an overview of an approach to the quantitative analysis of qualitative data with theoretical and methodological explanations of the two cornerstones of the approach, Alternating Least Squares and Optimal Scaling. Using these two principles, my colleagues and I have extended a variety of analysis procedures originally proposed for quantitative (interval or ratio) data to qualitative (nominal or ordinal) data, including additivity analysis and analysis of variance; multiple and canonical regression; principal components; common factor and three mode factor analysis; and multidimensional scaling. The approach has two advantages: (a) If a least squares procedure is known for analyzing quantitative data, it can be extended to qualitative data; and (b) the resulting algorithm will be convergent. Three completely worked through examples of the additivity analysis procedure and the steps involved in the regression procedures are presented.

Type
Original Paper
Copyright
Copyright © 1981 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presented as the Presidential Address to the Psychometric Society's Annual meeting, May, 1981. I wish to express my deep appreciation to Jan de Leeuw and Yoshio Takane. Our “team effort” was essential for the developments reported in this paper. Without this effort the present paper would not exist. Portions of this paper appear in Lantermann, E. D. & Feger, H. (Eds.) Similarity and Choice, Hans Huber, Vienna, 1980. The present paper benefits greatly from a set of detailed comments made by Joseph Kruskal on the earlier paper.

References

Reference Notes

Tenenhaus, M. Principal components analysis of qualitative variables. Report No. 175/1981, 1981, Jouy-en-Josas, France: Centre d'Enseignement Superieur des Affaires.Google Scholar
Tenenhaus, M. Principal components analysis of qualitative variables, 1981, Jouy-en-Josas, France: CESA.Google Scholar
de Leeuw, J. A normalized cone regression approach to alternating least squares algorithms. Unpublished note, University of Leiden, 1977b.Google Scholar
de Leeuw, J., & van Rijkevorsel, J. How to use HOMALS 3. A program for principal components analysis of mixed data which uses the alternating least squares method. Unpublished mimeo, Leiden University, 1976.Google Scholar
Young, F. W., Null, C. H., & De Soete, G. The general Euclidean Model. 1981 (in preparation).Google Scholar

References

Benzecri, J. P. L'analyse des donnees” Tome II: Correspondances Dunod, Paris, 1973.Google Scholar
Benzecri, J. P., Histoire et Prehistoire de l'analyse des donnees; l'analyse des correspondence. Les Cahiers de l'Analyse des Donnees (Volume II), Paris, 1977.Google Scholar
Bock, R. D. Methods and applications of optimal scaling. Psychometric Laboratory Report #25, University of North Carolina, 1960.Google Scholar
Burt, C. The factorial analysis of qualitative data. British Journal of Psychology, Statistical Section, 1950, 3, 166185.CrossRefGoogle Scholar
Burt, C. Scale analysis and factor analysis. British Journal of Statistical Psychology, 1953, 6, 524.CrossRefGoogle Scholar
Carroll, J. D., & Chang, J. J. Analysis of individual differences in multi-dimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 1970, 35, 283319.CrossRefGoogle Scholar
Coombs, C. H. A theory of Data, 1964, New York: Wiley.Google Scholar
de Leeuw, J. Canonical analysis of categorical data, 1973, The Netherlands: University of Leiden.Google Scholar
de Leeuw, J. Normalized cone regression, 1975, Leiden, The Netherlands: University of Leiden.Google Scholar
de Leeuw, J. Correctness of Kruskal's algorithms for monotone regression with ties. Psychometrika, 1977, 42, 141144.CrossRefGoogle Scholar
de Leeuw, J., Young, F. W., & Takane, Y. Additive structure in qualitative data: An alternating least squares method with optimal scaling features. Psychometrika, 1976, 41, 471503.CrossRefGoogle Scholar
Fisher, R. Statistical methods for research workers, 10th ed., Edinburgh: Oliver and Boyd, 1938.Google Scholar
Gifi, A. Nonlinear multivariate analysis (preliminary version). University of Leiden, Data Theory Department. 1981.Google Scholar
Guttman, L. The quantification of a class of attributes: A theory and method of scale construction. In Horst, P. (Eds.), The prediction of personal adjustment, 1941, New York: Social Science Research Council.Google Scholar
Guttman, L. A note on Sir Cyril Burt's “Factorial Analysis of Qualitative Data,”. The British Journal of Statistical Psychology, 1953, 7, 14.CrossRefGoogle Scholar
Hageman, L. A., & Porsching, T. A. Aspects of nonlinear block successive over-relaxation. SIAM Journal of Numerical Analysis, 1975, 12, 316335.CrossRefGoogle Scholar
Hayashi, C. On the quantification of qualitative data from the mathematico-statistical point of view. Annals of the Institute of Statistical Mathematics, 1950, 2, 3547.CrossRefGoogle Scholar
Horan, C. B. Multidimensional scaling: Combining observations when individuals have different perceptual structures. Psychometrika, 1969, 34, 139165.CrossRefGoogle Scholar
Kruskal, J. B. Nonmetric multidimensional scaling. Psychometrika, 1964, 29, 127.CrossRefGoogle Scholar
Kruskal, J. B. Analysis of factorial experiments by estimating monotone transformations of the data. Journal of the Royal Statistical Society, 1965, 27, 251263.CrossRefGoogle Scholar
Kruskal, J. B., & Carroll, J. D. Geometric models and badness-of-fit functions. In Krishnaiah, P. R. (Eds.), Multivariate analysis (Vol. 2), 1969, New York: Academic Press.Google Scholar
Mardia, K. V., Kent, J. T., & Bibby, J. M. Multivariate analysis, 1979, London: Academic Press.Google Scholar
Nishisato, S. Analysis of categorical data: Dual scaling and its applications. University of Toronto Press, 1980.CrossRefGoogle Scholar
Roskam, E. E. Metric analysis of ordinal data in psychology, 1968, Voorschoten, Holland: VAM.Google Scholar
Saito, T. Quantification of categorical data by using the generalized variance. Soken Kiyo: Nippon UNIVAC Sogo Kenkyn-Sho. 1973, 6180.Google Scholar
Sands, R., & Young, F. W. Component models for three-way data: An alternating least squares algorithm with optimal scaling features. Psychometrika, 1980, 45, 3967.CrossRefGoogle Scholar
Saporta, G. Liaisons entre plusieurs ensembles de variables et codages de donnes qualitatives. These de Doctorat de 3eme cycle, Paris, 1975.Google Scholar
Takane, Y., Young, F. W., & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika, 1977, 42, 767.CrossRefGoogle Scholar
Takane, Y., Young, F. W., & de Leeuw, J. An individual differences additive model: An alternating least squares method with optimal scaling features. Psychometrika, 1980, 45, 183209.CrossRefGoogle Scholar
Torgerson, W. S. Theory and methods of scaling, 1958, New York: Wiley.Google Scholar
Wold, H., & Lyttkens, E. Nonlinear iterative partial least squares (NIPALS) estimation procedures. Bulletin ISI, 1969, 43, 2947.Google Scholar
Young, F. W. A model for polynomial conjoint analysis algorithms. In Shepard, R. N., Romney, A. K., & Nerlove, S. (Eds.), Multidimensional scaling: Theory and applications in the behavioral sciences, 1972, New York: Academic Press.Google Scholar
Young, F. W. Methods for describing ordinal data with cardinal models. Journal of Mathematical Psychology, 1975, 12, 416436.CrossRefGoogle Scholar
Young, F. W. An asymmetric Euclidian model for multi-process asymmetric data. U.S.-Japan Seminar on Multidimensional Scaling, 1975b.Google Scholar
Young, F. W., de Leeuw, J., & Takane, Y. Multiple (and canonical) regression with a mix of qualitative and quantitative variables: An alternating least squares method with optimal scaling features. Psychometrika, 1976, 41, 505529.CrossRefGoogle Scholar
Young, F. W., & Lewyckyj, R. ALSCAL Users Guide, 1979, Carrboro, NC: Data Analysis and Theory.Google Scholar
Young, F. W., & Lewyckyj, R. The ALSCAL procedure. In Reinhardt, P. (Eds.), SAS Supplemental Library User's Guide, 1980, Raleigh, NC: SAS Institute.Google Scholar
Young, F. W., & Null, C. H. Multidimensional scaling of nominal data: The recovery of metric information with ALSCAL. Psychometrika, 1978, 43, 367379.CrossRefGoogle Scholar
Young, F. W., Takane, Y., & de Leeuw, J. The principal components of mixed measurement level data; An alternating least squares method with optimal scaling features. Psychometrika, 1978, 43, 279282.CrossRefGoogle Scholar
Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A nonmetric multidimensional scaling program with several individual differences options. Behavioral Research Methods and Instrumentation, 1978, 10, 451453.CrossRefGoogle Scholar
Young, F. W., Takane, Y., & Lewyckyj, R. ALSCAL: A multidimensional scaling package with several individual differences options. American Statistician, 1980, 34, 117118.CrossRefGoogle Scholar
Yule, G. U. An introduction to the theory of statistics, 1910, London: Griffin.Google Scholar